
The Grossone methodology perspective on
Turing machines

Yaroslav D. Sergeyev and Alfredo Garro

Abstract This chapter discusses how the mathematical language used to describe
and to observe automatic computations influences the accuracy of the obtained
results. The chapter presents results obtained by describing and observing dif-
ferent kinds of Turing machines (single and multi-tape, deterministic and non-
deterministic) through the lens of a new mathematical language named Grossone.
This emerging language is strongly based on three methodological ideas borrowed
from Physics and applied to Mathematics: the distinction between the object (indeed
mathematical object) of an observation and the instrument used for this observation;
interrelations holding between the object and the tool usedfor the observation; the
accuracy of the observation determined by the tool. In the chapter, the new results
are compared to those achievable by using traditional languages. It is shown that
both languages do not contradict each other but observe and describe the same ob-
ject (Turing machines) but with different accuracies.

1 Introduction

Turing machines represent one of the simple abstract computational devices that can
be used to investigate the limits of computability . In this chapter, they are consid-
ered from several points of view that emphasize the importance and the relativity of

Yaroslav D. Sergeyev
Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica (DIMES), Uni-
versit̀a della Calabria, Rende (CS), Italy.
N.I. Lobatchevsky State University, Nizhni Novgorod, Russia.
Istituto di Calcolo e Reti ad Alte Prestazioni, C.N.R., Rende (CS), Italy.
e-mail: yaro@si.dimes.unical.it

Alfredo Garro
Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica (DIMES), Uni-
versit̀a della Calabria, Rende (CS), Italy.
e-mail: garro@dimes.unical.it

1

2 Yaroslav D. Sergeyev and Alfredo Garro

mathematical languages used to describe the Turing machines. A deep investigation
is performed on the interrelations between mechanical computations and their math-
ematical descriptions emerging when a human (the researcher) starts to describe a
Turing machine (the object of the study) by different mathematical languages (the
instruments of investigation).

In particular, we focus our attention on different kinds of Turing machines (single
and multi-tape, deterministic and non-deterministic) by organizing and discussing
the results presented in [42] and [43] so to provide a compendium of our multi-year
research on this subject.

The starting point is represented by numeral systems1 that we use to write down
numbers, functions, models, etc. and that are among our tools of investigation of
mathematical and physical objects. It is shown that numeralsystems strongly in-
fluence our capabilities to describe both the mathematical and physical worlds. A
new numeral system introduced in [30, 32, 37]) for performing computations with
infinite and infinitesimal quantities is used for the observation of mathematical ob-
jects and studying Turing machines. The new methodology is based on the principle
‘The part is less than the whole’ introduced by Ancient Greeks (see, e.g., Euclid’s
Common Notion 5) and observed in practice. It is applied to all sets and processes
(finite and infinite) and all numbers (finite, infinite, and infinitesimal).

In order to see the place of the new approach in the historicalpanorama of ideas
dealing with infinite and infinitesimal, see [19, 20, 21, 35, 36, 42, 43]. The new
methodology has been successfully applied for studying a number of applications:
percolation (see [13, 45]), Euclidean and hyperbolic geometry (see [22, 29]), fractals
(see [31, 33, 40, 45]), numerical differentiation and optimization (see [7, 34, 38,
48]), ordinary differential equations (see [41]), infiniteseries (see [35, 39, 47]), the
first Hilbert problem (see [36]), and cellular automata (see[8]).

The rest of the chapter is structured as follows. In Section 2, Single and Multi-
tape Turing machines are introduced along with “classical”results concerning their
computational power and related equivalences; in Section 3a brief introduction to
the new language and methodology is given whereas their exploitation for analyzing
and observing the different types of Turing machines is discussed in Section 4. It
shows that the new approach allows us to observe Turing machines with a higher
accuracy giving so the possibility to better characterize and distinguish machines
which are equivalent when observed within the classical framework. Finally, Sec-
tion 5 concludes the chapter.

1 We are reminded that anumeralis a symbol or group of symbols that represents anumber. The
difference between numerals and numbers is the same as the difference between words and the
things they refer to. Anumberis a concept that anumeralexpresses. The same number can be
represented by different numerals. For example, the symbols ‘7’, ‘seven’, and ‘VII’ are different
numerals, but they all represent the same number.

A new perspective on Turing machines 3

2 Turing machines

The Turing machine is one of the simple abstract computational devices that can be
used to model computational processes and investigate the limits of computability.
In the following subsections, deterministic Single and Multi-tape Turing machines
are described along with important classical results concerning their computational
power and related equivalences (see Section 2.1 and 2.2 respectively); finally, non-
deterministic Turing machines are introduced (see Section2.3).

2.1 Single-Tape Turing machines

A Turing machine (see, e.g., [12, 44]) can be defined as a 7-tuple

M =
〈
Q,Γ, b̄,Σ,q0,F,δ

〉
, (1)

whereQ is a finite and not empty set of states;Γ is a finite set of symbols;̄b∈ Γ is
a symbol called blank;Σ ⊆ {Γ− b̄} is the set of input/output symbols;q0 ∈ Q is the
initial state;F ⊆ Q is the set of final states;δ : {Q−F}×Γ 7→ Q×Γ×{R,L,N} is
a partial function called the transition function, whereL means left,R means right,
andN means no move .

Specifically, the machine is supplied with: (i) ataperunning through it which is
divided into cells each capable of containing a symbolγ ∈ Γ, whereΓ is called the
tape alphabet, and̄b∈ Γ is the only symbol allowed to occur on the tape infinitely
often; (ii) aheadthat can read and write symbols on the tape and move the tape left
and right one and only one cell at a time. The behavior of the machine is specified
by its transition functionδ and consists of a sequence of computational steps ; in
each step the machine reads the symbol under the head and applies thetransition
functionthat, given the current state of the machine and the symbol itis reading on
the tape, specifies (if it is defined for these inputs): (i) thesymbolγ ∈ Γ to write on
the cell of the tape under the head; (ii) the move of the tape (L for one cell left,R for
one cell right,N for no move); (iii) the next stateq∈ Q of the machine.

2.1.1 Classical results for Single-Tape Turing machines

Starting from the definition of Turing machine introduced above, classical results
(see, e.g., [1]) aim at showing that different machines in terms of provided tape and
alphabet have the same computational power, i.e., they are able to execute the same
computations. In particular, two main results are reportedbelow in an informal way.

Given a Turing machineM = {Q,Γ, b̄,Σ,q0,F,δ}, which is supplied with an infi-
nite tape, it is always possible to define a Turing machineM ′= {Q′,Γ′, b̄,Σ′,q′0,F

′,δ′}
which is supplied with a semi-infinite tape (e.g., a tape witha left boundary) and is
equivalent toM , i.e., is able to execute all the computations ofM .

4 Yaroslav D. Sergeyev and Alfredo Garro

Given a Turing machineM = {Q,Γ, b̄,Σ,q0,F,δ}, it is always possible to define
a Turing machineM ′ = {Q′,Γ′, b̄,Σ′,q′0,F

′,δ′} with |Σ′| = 1 andΓ′ = Σ′ ∪ {b̄},
which is equivalent toM , i.e., is able to execute all the computations ofM .

It should be mentioned that these results, together with theusual conclusion re-
garding the equivalences of Turing machines, can be interpreted in the following,
less obvious, way: they show that when we observe Turing machines by exploiting
the classical framework we are not able to distinguish, fromthe computational point
of view, Turing machines which are provided with alphabets having different num-
ber of symbols and/or different kind of tapes (infinite or semi-infinite) (see [42] for
a detailed discussion).

2.2 Multi-tape Turing machines

Let us consider a variant of the Turing machine defined in (1) where a machine
is equipped with multiple tapes that can be simultaneously accessed and updated
through multiple heads (one per tape). These machines can beused for a more direct
and intuitive resolution of different kind of computational problems. As an example,
in checking if a string is palindrome it can be useful to have two tapes on which
represent the input string so that the verification can be efficiently performed by
reading a tape from left to right and the other one from right to left.

Moving towards a more formal definition, ak-tapes,k ≥ 2, Turing machine
(see [12]) can be defined (cf. (1)) as a 7-tuple

M K =
〈

Q,Γ, b̄,Σ,q0,F,δ(k)
〉
, (2)

whereΣ =
⋃k

i=1 Σi is given by the union of the symbols in the k input/output al-
phabetsΣ1, . . . ,Σk; Γ = Σ∪{b̄} whereb̄ is a symbol called blank;Q is a finite and
not empty set of states;q0 ∈ Q is the initial state;F ⊆ Q is the set of final states;
δ(k) : {Q−F}×Γ1 × ·· · ×Γk 7→ Q×Γ1 × ·· · ×Γk ×{R,L,N}k is a partial func-
tion called the transition function, whereΓi = Σi ∪{b̄}, i = 1, . . . ,k, L means left,R
means right, andN means no move .

This definition ofδ(k) means that the machine executes a transition starting from
an internal stateqi and with thek heads (one for each tape) above the characters
ai1, . . . ,ai k, i.e., if δ(k)(q1,ai1, . . . ,ai k) = (q j ,a j 1, . . . ,a j k,zj 1, . . . ,zj k) the machine
goes in the new stateq j , write on the k tapes the charactersa j 1, . . . ,a j k respec-
tively, and moves each of its k heads left, right or no move, asspecified by the
zj l ∈ {R,L,N}, l = 1, . . . ,k.

A machine can adopt for each tape a different alphabet, in anycase, for each tape,
as for the Single-tape Turing machines, the minimum portioncontaining characters
distinct fromb̄ is usually represented. In general, a typical configurationof a Multi-
tape machine consists of a read-only input tape, several read and write work tapes,
and a write-only output tape, with the input and output tapesaccessible only in one
direction. In the case of ak-tapes machine, the instant configuration of the machine,

A new perspective on Turing machines 5

as for the Single-tape case, must describe the internal state, the contents of the tapes
and the positions of the heads of the machine.

More formally, for ak-tapes Turing machineM K =
〈

Q,Γ, b̄,Σ,q0,F,δ(k)
〉

with

Σ =
⋃k

i=1 Σi (see 2) a configuration of the machine is given by:

q#α1 ↑ β1#α2 ↑ β2#. . .#αk ↑ βk, (3)

whereq∈ Q; αi ∈ ΣiΓ∗
i ∪{ε} andβi ∈ Γ∗

i Σi ∪{b̄}. A configuration isfinal if q∈ F .
Thestartingconfiguration usually requires the input stringx on a tape, e.g., the

first tape so thatx∈ Σ∗
1, and onlyb̄ symbols on all the other tapes. However, it can be

useful to assume that, at the beginning of a computation, these tapes have a starting
symbolZ0 /∈ Γ =

⋃k
i=1 Γi . Therefore, in the initial configuration the head on the first

tape will be on the first character of the input stringx, whereas the heads on the other
tapes will observe the symbolZ0, more formally, by re-placingΓi = Σi ∪{b̄,Z0} in
all the previous definition, a configurationq#α1 ↑ β1#α2 ↑ β2#. . .#αk ↑ βk is an
initial configurationif αi = ε, i = 1, . . . ,k,β1 ∈ Σ∗

1,βi = Z0, i = 2, . . . ,k andq= q0.
The application of the transition functionδ(k) at a machine configuration (c.f.

(3)) defines acomputational stepof a Multi-tape Turing machine . The set of com-
putational steps which bring the machine from the initial configuration into a final
configuration defines thecomputationexecuted by the machine. As an example,
the computation of a Multi-tape Turing machineM K which computes the function
fMK

(x) can be represented as follows:

q0# ↑ x# ↑ Z0#. . .# ↑ Z0

→
M K q# ↑ x# ↑ fMK

(x)# ↑ b̄#. . .# ↑ b̄ (4)

whereq∈ F and
→
M K indicates the transition among machine configurations.

2.2.1 Classical results for Multi-Tape Turing machines

It is worth noting that, although thek-tapes Turing machine can be used for a more
direct resolution of different kind of computational problems, in the classical frame-
work it has the same computational power of the Single-tape Turing machine. More
formally, given a Multi-tape Turing machine it is always possible to define a Single-
tape Turing machine which is able to fully simulate its behavior and therefore to
completely execute its computations. In particular, the Single-tape Turing machines
adopted for the simulation use a particular kind of the tape which is divided into
tracks (multi-track tape). In this way, if the tape hasm tracks, the head is able to
access (for reading and/or writing) all them characters on the tracks during a sin-
gle operation. If for them tracks the alphabetsΓ1, . . . Γm are adopted respectively,
the machine alphabetΓ is such that|Γ| = |Γ1×·· ·×Γm| and can be defined by an
injective function from the setΓ1 × ·· · ×Γm to the setΓ; this function will asso-
ciate the symbol̄b in Γ to the tuple(b̄, b̄, . . . , b̄) in Γ1 × ·· · ×Γm. In general, the

6 Yaroslav D. Sergeyev and Alfredo Garro

elements ofΓ which correspond to the elements inΓ1× ·· ·×Γm can be indicated
by [ai1,ai2, . . . ,aim] whereai j ∈ Γ j .

By adopting this notation it is possible to demonstrate thatgiven ak-tapes Turing
machineM K = {Q,Γ, b̄,Σ,q0,F,δ(k)} it is always possible to define a Single-tape
Turing machine which is able to simulatet computational steps ofM K = in O(t2)
transitions by using an alphabet withO((2|Γ|)k) symbols (see [1]) .

The proof is based on the definition of a machineM ′ = {Q′,Γ′, b̄,Σ′,q′0,F
′,δ′}

with a Single-tape divided into 2k tracks (see [1]);k tracks for storing the characters
in thek tapes ofM K andk tracks for signing through the marker↓ the positions of
thek heads on thek tapes ofM k. As an example, this kind of tape can represent the
content of each tapes ofM k and the position of each machine heads in its even and
odd tracks respectively. As discussed above, for obtaininga Single-tape machine
able to represent these 2k tracks, it is sufficient to adopt an alphabet with the required
cardinality and define an injective function which associates a 2k-ple characters of
a cell of the multi-track tape to a symbols in this alphabet.

The transition functionδ(k) of thek-tapes machine is given byδ(k)(q1,ai1, . . . ,ai k)=
(q j ,a j 1, . . . ,a j k,zj 1, . . . ,zj k), with zj 1, . . . ,zj k ∈ {R,L,N}; as a consequence the cor-
responding transition functionδ′ of the Single-tape machine, for each transition
specified byδ(k) must individuate the current state and the position of the marker
for each track and then write on the tracks the required symbols, move the markers
and go in another internal state. For each computational step of M K , the machine
M ′ must execute a sequence of steps for covering the portion of tapes between the
two most distant markers. As in each computational step a marker can move at most
of one cell and then two markers can move away each other at most of two cells,
aftert steps ofM K the markers can be at most 2t cells distant, thus ifM K executes
t steps,M ′ executes at most: 2∑t

i=1 i = t2+ t = O(t2) steps .
Moving to the cost of the simulation in terms of the number of required characters

for the alphabet of the Single-tape machine, we recall that|Γ1| = |Σ1|+1 and that
|Γi | = |Σi |+2 for 2≤ i ≤ k. So by multiplying the cardinalities of these alphabets
we obtain that:|Γ′|= 2k(|Σ1|+1)∏k

i=2(|Σi |+2) = O((2max1≤i≤k |Γi |)k).

2.3 Non-deterministic Turing machines

A non-deterministic Turing machine (see [12]) can be defined(cf. (1)) as a 7-tuple

MN =
〈
Q,Γ, b̄,Σ,q0,F,δN

〉
, (5)

whereQ is a finite and not empty set of states;Γ is a finite set of symbols;̄b∈ Γ is
a symbol called blank;Σ ⊆ {Γ− b̄} is the set of input/output symbols;q0 ∈ Q is the
initial state;F ⊆Q is the set of final states;δN : {Q−F}×Γ 7→ P (Q×Γ×{R,L,N})
is a partial function called the transition function, whereL means left,Rmeans right,
andN means no move .

A new perspective on Turing machines 7

As for a deterministic Turing machine (see (1)), the behavior of MN is specified
by its transition functionδN and consists of a sequence of computational steps . In
each step, given the current state of the machine and the symbol it is reading on
the tape, the transition functionδN returns (if it is defined for these inputs) a set of
triplets each of which specifies: (i) a symbolγ ∈ Γ to write on the cell of the tape
under the head; (ii) the move of the tape (L for one cell left,R for one cell right,N
for no move); (iii) the next stateq∈ Q of the Machine. Thus, in each computational
step, the machine cannon-deterministicallyexecute different computations, one for
each triple returned by the transition function.

An important characteristic of a non-deterministic Turingmachine (see, e.g., [1])
is its non-deterministic degree

d = ν(MN) = max
q∈Q−F,γ∈Γ

|δN(q,γ)|

defined as the maximal number of different configurations reachable in a single
computational step starting from a given configuration. Thebehavior of the machine
can be then represented as a tree whose branches are the computations that the
machine can execute starting from the initial configurationrepresented by the node
0 and nodes of the tree at the levels 1, 2, etc. represent subsequent configurations of
the machine.

Let us consider an example shown in Fig. 1 where a non-deterministic machine
MN having the non-deterministic degreed = 3 is presented. The depth of the com-
putational tree is equal tok. In this example, it is supposed that the computational
tree ofMN is complete (i.e., each node has exactlyd children). Then, obviously, the
computational tree ofMN hasdk = 3k leaf nodes.

2.3.1 Classical results for non-deterministic Turing machines

An important result for the classic theory on Turing machines (see e.g., [1]) is that
for any non-deterministic Turing machineMN there exists an equivalent determinis-
tic Turing machineMD. Moreover, if the depth of the computational tree generated
by MN is equal tok, then for simulatingMN, the deterministic machineMD will
execute at most

KMD
=

k

∑
j=0

jd j = O(kdk)

computational steps.
Intuitively, for simulatingMN, the deterministic Turing machineMD executes

a breadth-first visit of the computational tree ofMN. If we consider the example
from Fig. 1 withk = 3, then the computational tree ofMN hasdk = 27 leaf nodes
anddk = 27 computational paths consisting ofk = 3 branches (i.e., computational
steps) . Then, the tree containsdk−1 = 9 computational paths consisting ofk−1= 2
branches anddk−2 = 3 computational paths consisting ofk−2= 1 branches . Thus,
for simulating all the possible computations ofMN, i.e., for complete visiting the

8 Yaroslav D. Sergeyev and Alfredo Garro

Fig. 1 The computational tree of a non-deterministic Turing machineMN having the non-
deterministic degreed = 3

computational tree ofMN and considering all the possible computational paths of
j computational steps for each 06 j 6 k, the deterministic Turing machineMD

will executeKMD
steps. In particular, ifMN reaches a final configuration (e.g., it

accepts a string) ink> 0 steps and ifMD could consider only thedk computational
paths which consist ofk computational steps, it will executes at mostkdk steps for
reaching this configuration.

These results show an exponential growth of the time required for reaching a fi-
nal configuration by the deterministic Turing machineMD with respect to the time
required by the non-deterministic Turing machineMN, assuming that the time re-
quired for both machines for a single step is the same. However, in the classic theory
on Turing machines it is not known if there is a more efficient simulation ofMN.
In other words, it is an important and open problem of Computer Science theory to
demonstrate that it is not possible to simulate a non-deterministic Turing machine
by a deterministic Turing machine with a sub-exponential numbers of steps.

A new perspective on Turing machines 9

3 The Grossone Language and Methodology

In this section, we give just a brief introduction to the methodology of the new
approach [30, 32] dwelling only on the issues directly related to the subject of the
chapter. This methodology will be used in Section 4 to study Turing machines and
to obtain some more accurate results with respect to those obtainable by using the
traditional framework [4, 44] .

In order to start, let us remind that numerous trials have been done during
the centuries to evolve existing numeral systems in such a way that numerals
representing infinite and infinitesimal numbers could be included in them (see
[2, 3, 5, 17, 18, 25, 28, 46]). Since new numeral systems appear very rarely, in each
concrete historical period their significance for Mathematics is very often underes-
timated (especially by pure mathematicians). In order to illustrate their importance,
let us remind the Roman numeral system that does not allow oneto express zero and
negative numbers. In this system, the expression III-X is anindeterminate form. As
a result, before appearing the positional numeral system and inventing zero math-
ematicians were not able to create theorems involving zero and negative numbers
and to execute computations with them.

There exist numeral systems that are even weaker than the Roman one. They se-
riously limit their users in executing computations. Let usrecall a study published
recently inScience(see [11]). It describes a primitive tribe living in Amazonia (Pi-
rah̃a). These people use a very simple numeral system for counting: one, two, many.
For Pirah̃a, all quantities larger than two are just ‘many’ and such operations as 2+2
and 2+1 give the same result, i.e., ‘many’. Using their weak numeral system Pirahã
are not able to see, for instance, numbers 3, 4, 5, and 6, to execute arithmetical op-
erations with them, and, in general, to say anything about these numbers because in
their language there are neither words nor concepts for that.

In the context of the present chapter, it is very important that the weakness of
Pirah̃a’s numeral system leads them to such results as

‘many’+1= ‘many’, ‘many’+2= ‘many’, (6)

which are very familiar to us in the context of views on infinity used in the traditional
calculus

∞+1= ∞, ∞+2= ∞. (7)

The arithmetic of Pirah̃a involving the numeral ‘many’ has also a clear similarity
with the arithmetic proposed by Cantor for his Alephs2:

ℵ0+1= ℵ0, ℵ0+2= ℵ0, ℵ1+1= ℵ1, ℵ1+2= ℵ1. (8)

2 This similarity becomes even more pronounced if one considers another Amazonian tribe –
Munduruḱu (see [26]) – who fail in exact arithmetic with numbers larger than 5 but are able to
compare and add large approximate numbers that are far beyond their naming range. Particularly,
they use the words ‘some, not many’ and ‘many, really many’ to distinguish two types of large
numbers using the rules that are very similar to ones used by Cantorto operate withℵ0 andℵ1,
respectively.

10 Yaroslav D. Sergeyev and Alfredo Garro

Thus, the modern mathematical numeral systems allow us to distinguish a larger
quantity of finite numbers with respect to Pirahã but give results that are similar to
those of Pirah̃a when we speak about infinite quantities. This observation leads us to
the following idea:Probably our difficulties in working with infinity is not connected
to the nature of infinity itself but is a result of inadequate numeral systems that we
use to work with infinity, more precisely, to express infinitenumbers.

The approach developed in [30, 32, 37] proposes a numeral system that uses
the same numerals for several different purposes for dealing with infinities and in-
finitesimals: in Analysis for working with functions that can assume different infi-
nite, finite, and infinitesimal values (functions can also have derivatives assuming
different infinite or infinitesimal values); for measuring infinite sets; for indicating
positions of elements in ordered infinite sequences ; in probability theory, etc. (see
[7, 8, 13, 22, 29, 31, 33, 34, 35, 36, 38, 39, 40, 45, 47, 48]). Itis important to em-
phasize that the new numeral system avoids situations of thetype (6)–(8) providing
results ensuring that ifa is a numeral written in this system then for anya (i.e., a
can be finite, infinite, or infinitesimal) it followsa+1> a.

The new numeral system works as follows. A new infinite unit ofmeasure ex-
pressed by the numeral① calledgrossoneis introduced as the number of elements
of the set,N, of natural numbers. Concurrently with the introduction ofgrossone in
the mathematical language all other symbols (like∞, Cantor’sω, ℵ0,ℵ1, ..., etc.)
traditionally used to deal with infinities and infinitesimals are excluded from the lan-
guage because grossone and other numbers constructed with its help not only can
be used instead of all of them but can be used with a higher accuracy3. Grossone is
introduced by describing its properties postulated by the Infinite Unit Axiom (see
[32, 37]) added to axioms for real numbers (similarly, in order to pass from the set,
N, of natural numbers to the set,Z, of integers a new element – zero expressed by
the numeral 0 – is introduced by describing its properties) .

The new numeral① allows us to construct different numerals expressing different
infinite and infinitesimal numbers and to execute computations with them. Let us
give some examples. For instance, in Analysis, indeterminate forms are not present
and, for example, the following relations hold for① and①−1 (that is infinitesimal),
as for any other (finite, infinite, or infinitesimal) number expressible in the new
numeral system

0·① = ① ·0= 0, ①−① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0, (9)

0·①−1 = ①−1 ·0= 0, ①−1 > 0, ①−2 > 0, ①−1−①−1 = 0, (10)

①−1

①−1 = 1,
①−2

①−2 = 1, (①−1)0 = 1, ① ·①−1 = 1, ① ·①−2 = ①−1. (11)

The new approach gives the possibility to develop a new Analysis (see [35])
where functions assuming not only finite values but also infinite and infinitesimal

3 Analogously, when the switch from Roman numerals to the Arabic ones has been done, numerals
X, V, I, etc. have been excluded from records using Arabic numerals.

A new perspective on Turing machines 11

ones can be studied. For all of them it becomes possible to introduce a new notion
of continuity that is closer to our modern physical knowledge. Functions assuming
finite and infinite values can be differentiated and integrated.

By using the new numeral system it becomes possible to measure certain infinite
sets and to see, e.g., that the sets of even and odd numbers have ①/2 elements
each. The set,Z, of integers has 2①+1 elements (① positive elements,① negative
elements, and zero). Within the countable sets and sets having cardinality of the
continuum (see [20, 36, 37]) it becomes possible to distinguish infinite sets having
different number of elements expressible in the numeral system using grossone and
to see that, for instance,

①

2
< ①−1< ① < ①+1< 2①+1< 2①2−1< 2①2 < 2①2+1<

2①2+2< 2①−1< 2① < 2①+1< 10① < ①①−1< ①① < ①①+1. (12)

Another key notion for our study of Turing machines is that ofinfinite sequence.
Thus, before considering the notion of the Turing machine from the point of view
of the new methodology, let us explain how the notion of the infinite sequence can
be viewed from the new positions.

3.1 Infinite sequences

Traditionally, aninfinite sequence{an},an ∈ A, n∈ N, is defined as a function hav-
ing the set of natural numbers,N, as the domain and a setA as the codomain. A
subsequence{bn} is defined as a sequence{an} from which some of its elements
have been removed . In spite of the fact that the removal of theelements from{an}
can be directly observed, the traditional approach does notallow one to register, in
the case where the obtained subsequence{bn} is infinite, the fact that{bn} has less
elements than the original infinite sequence{an}.

Let us study what happens when the new approach is used. From the point of
view of the new methodology, an infinite sequence can be considered in a dual way:
either as an object of a mathematical study or as a mathematical instrument devel-
oped by human beings to observe other objects and processes.First, let us consider
it as a mathematical object and show that the definition of infinite sequences should
be done more precise within the new methodology. In the finitecase, a sequence
a1,a2, . . . ,an hasn elements and we extend this definition directly to the infinite
case saying that an infinite sequencea1,a2, . . . ,an hasn elements wheren is ex-
pressed by an infinite numeral such that the operations with it satisfy the Postulate 3
of the Grossone methodology4. Then the following result (see [30, 32]) holds. We
reproduce here its proof for the sake of completeness.

4 The Postulate 3 states:The part is less than the wholeis applied to all numbers (finite, infinite,
and infinitesimal) and to all sets and processes (finite and infinite), see[30].

12 Yaroslav D. Sergeyev and Alfredo Garro

Theorem 1. The number of elements of any infinite sequence is less or equal to ①.

Proof. The new numeral system allows us to express the number of elements
of the setN as①. Thus, due to the sequence definition given above, any sequence
havingN as the domain has① elements.

The notion of subsequence is introduced as a sequence from which some of its
elements have been removed. This means that the resulting subsequence will have
less elements than the original sequence. Thus, we obtain infinite sequences having
the number of members less than grossone. 2

It becomes appropriate now to define thecomplete sequenceas an infinite se-
quence containing① elements . For example, the sequence of natural numbers is
complete, the sequences of even and odd natural numbers are not complete because

they have①
2 elements each (see [30, 32]). Thus, the new approach imposesa more

precise description of infinite sequences than the traditional one: to define a se-
quence{an} in the new language, it is not sufficient just to give a formulafor an, we
should determine (as it happens for sequences having a finitenumber of elements)
its number of elements and/or the first and the last elements of the sequence. If the
number of the first element is equal to one, we can use the record {an : k} wherean

is, as usual, the general element of the sequence andk is the number (that can be
finite or infinite) of members of the sequence; the following example clarifies these
concepts.

Example 1.Let us consider the following three sequences:

{an : ①}= {4, 8, . . . 4(①−1), 4①}; (13)

{bn :
①

2
−1}= {4, 8, . . . 4(

①

2
−2), 4(

①

2
−1)}; (14)

{cn :
2①

3
}= {4, 8, . . . 4(

2①

3
−1), 4

2①

3
}. (15)

The three sequences havean = bn = cn = 4n but they are different because they
have different number of members. Sequence{an} has① elements and, therefore,

is complete,{bn} has①
2 −1, and{cn} has 2①3 elements. 2

Let us consider now infinite sequences as one of the instruments used by math-
ematicians to study the world around us and other mathematical objects and pro-
cesses. The first immediate consequence of Theorem 1 is that any sequentialpro-
cess can have at maximum① elements. This means that a process of sequential
observations of any object cannot contain more than① steps5. We are not able to

5 It is worthy to notice a deep relation of this observation to the Axiom of Choice. Since Theorem 1
states that any sequence can have at maximum① elements, so this fact holds for the process of a
sequential choice, as well. As a consequence, it is not possible to choose sequentially more than
① elements from a set. This observation also emphasizes the fact thatthe parallel computational
paradigm is significantly different with respect to the sequential one becausep parallel processes
can choosep·① elements from a set.

A new perspective on Turing machines 13

execute any infinite process physically but we assume the existence of such a pro-
cess; moreover, only a finite number of observations of elements of the considered
infinite sequence can be executed by a human who is limited by the numeral system
used for the observation. Indeed, we can observe only those members of a sequence
for which there exist the corresponding numerals in the chosen numeral system; to
better clarify this point the following example is discussed.

Example 2.Let us consider the numeral system,P , of Pirah̃a able to express only
numbers 1 and 2. If we add toP the new numeral①, we obtain a new numeral
system (we call it̂P). Let us consider now a sequence of natural numbers{n : ①}.
It goes from 1 to① (note that both numbers, 1 and①, can be expressed by numerals
from P̂). However, the numeral system̂P is very weak and it allows us to observe
only ten numbers from the sequence{n : ①} represented by the following numerals

1,2︸︷︷︸
f inite

, . . .
①

2
−2,

①

2
−1,

①

2
,

①

2
+1,

①

2
+2

︸ ︷︷ ︸
in f inite

, . . . ①−2,①−1,①︸ ︷︷ ︸
in f inite

. (16)

The first two numerals in (16) represent finite numbers, the remaining eight numer-
als express infinite numbers, and dots represent members of the sequence of natural
numbers that are not expressible inP̂ and, therefore, cannot be observed if one uses
only this numeral system for this purpose. 2

In the light of the limitations concerning the process of sequential observations,
the researcher can choose how to organize the required sequence of observations
and which numeral system to use for it, defining so which elements of the object
he/she can observe. This situation is exactly the same as in natural sciences: before
starting to study a physical object, a scientist chooses an instrument and its accuracy
for the study.

Example 3.Let us consider the set A={1,2,3, . . . ,2①-1,2①} as an object of our
observation. Suppose that we want to organize the process ofthe sequential counting
of its elements. Then, due to Theorem 1, starting from the number 1 this process can
arrive at maximum to①. If we consider the complete counting sequence{n : ①},
then we obtain

1,2, 3, 4, . . . ①−2,①−1,①,①+1,①+2,①+3, . . . ,2①−1,2①xxxx xx x

︸ ︷︷ ︸
① steps

(17)

Analogously, if we start the process of the sequential counting from 5, the process
arrives at maximum to①+4:

1,2,3,4,5 . . . ①−1,①,①+1,①+2,①+3,①+4,①+5, . . . ,2①−1,2①x xxx xxx

︸ ︷︷ ︸
① steps

(18)

14 Yaroslav D. Sergeyev and Alfredo Garro

The corresponding complete sequence used in this case is{n+4 : ①}. We can also
change the length of the step in the counting sequence and consider, for instance,
the complete sequence{2n−1 : ①}:

1,2,3,4, . . . ①−1,①,①+1,①+2, . . . 2①−3,2①−2,2①−1,2①xx x x xx x

︸ ︷︷ ︸
① steps

(19)

If we use again the numeral system̂P , then among finite numbers it allows us to see
only number 1 because already the next number in the sequence, 3, is not expressible
in P̂ . The last element of the sequence is 2①−1 andP̂ allows us to observe it. 2

The introduced definition of the sequence allows us to work not only with the
first but with any element of any sequence if the element of ourinterest is express-
ible in the chosen numeral system independently whether thesequence under our
study has a finite or an infinite number of elements. Let us use this new definition
for studying infinite sets of numerals, in particular, for calculating the number of
points at the interval[0,1) (see [30, 32]). To do this we need a definition of the term
‘point’ and mathematical tools to indicate a point. If we accept (as is usually done
in modern Mathematics) that apoint Abelonging to the interval[0,1) is determined
by a numeralx, x∈ S, calledcoordinate of the point AwhereS is a set of numerals,
then we can indicate the pointA by its coordinatex and we are able to execute the
required calculations.

It is worthwhile to emphasize that giving this definition we have not used the
usual formulation “x belongs to the set,R, of real numbers”. This has been done be-
cause we can express coordinates only by numerals and different choices of numeral
systems lead to different sets of numerals and, as a result, to different sets of num-
bers observable through the chosen numerals. In fact, we canexpress coordinates
only after we have fixed a numeral system (our instrument of the observation) and
this choice defines which points we can observe, namely, points having coordinates
expressible by the chosen numerals. This situation is typical for natural sciences
where it is well known that instruments influence the resultsof observations. Re-
mind the work with a microscope: we decide the level of the precision we need and
obtain a result which is dependent on the chosen level of accuracy. If we need a
more precise or a more rough answer, we change the lens of our microscope.

We should decide now which numerals we shall use to express coordinates of
the points. After this choice we can calculate the number of numerals expressible
in the chosen numeral system and, as a result, we obtain the number of points at
the interval[0,1). Different variants (see [30, 32]) can be chosen depending on the
precision level we want to obtain. For instance, we can choose a positional numeral
system with a finite radixb that allows us to work with numerals

(0.a1a2 . . .a(①−1)a①)b, ai ∈ {0,1, . . .b−2,b−1}, 1≤ i ≤ ①. (20)

A new perspective on Turing machines 15

Then, the number of numerals (20) gives us the number of points within the inter-
val [0,1) that can be expressed by these numerals. Note that a number using the
positional numeral system (20) cannot have more than grossone digits (contrarily
to sets discussed in Example 3) because a numeral havingg> ① digits would not
be observable in a sequence. In this case (g> ①) such a record becomes useless in
sequential computations because it does not allow one to identify numbers entirely
sinceg−① numerals remain non observed.

Theorem 2. If coordinates of points x∈ [0,1) are expressed by numerals (20), then
the number of the points x over[0,1) is equal to b①.

Proof.In the numerals (20) there is a sequence of digits,a1a2 . . .a(①−1)a①, used to
express the fractional part of the number. Due to the definition of the sequence and
Theorem 1, any infinite sequence can have at maximum① elements. As a result,
there is① positions on the right of the dot that can be filled in by one of theb digits
from the alphabet{0,1, . . . ,b− 1} that leads tob① possible combinations. Hence,
the positional numeral system using the numerals of the form(20) can expressb①

numbers. 2

Corollary 1. The number of numerals

(a1a2a3 . . .a①−2a①−1a①)b, ai ∈ {0,1, . . .b−2,b−1}, 1≤ i ≤ ①, (21)

expressing integers in the positional system with a finite radix b in the alphabet
{0,1, . . .b−2,b−1} is equal to b①.

Proof.The proof is a straightforward consequence of Theorem 2 and is so omit-
ted. 2

Corollary 2. If coordinates of points x∈ (0,1) are expressed by numerals (20), then
the number of the points x over(0,1) is equal to b① −1.

Proof.The proof follows immediately from Theorem 2. 2

Note that Corollary 2 shows that it becomes possible now to observe and to reg-
ister the difference of the number of elements of two infinitesets (the interval[0,1)
and the interval(0,1), respectively) even when only one element (the point 0, ex-
pressed by the numeral 0.00. . .0 with ① zero digits after the decimal point) has been
excluded from the first set in order to obtain the second one.

4 Observing Turing machines through the lens of the Grossone
Methodology

In this Section the different types of Turing machines introduced in Section 2 are
analyzed and observed by using as instruments of observation the Grossone lan-
guage and methodology presented in Section 3 . In particular, after introducing a

16 Yaroslav D. Sergeyev and Alfredo Garro

distiction between physical and ideal Turing machine (see Section 4.1), some re-
sults for Single-tape and Multi-tape Turing machines are summarized (see Sections
4.2 and 4.3 respectively), then a discussion about the equivalence between Single
and Multi-tape Turing machine is reported in Section 4.4. Finally, a comparison be-
tween deterministic and non-deterministic Turing machines through the lens of the
Grossone methodology is presented in Section 4.5.

4.1 Physical and Ideal Turing machines

Before starting observing Turing machines by using the Grossone methodology, it
is useful to recall the main results showed in the previous Section: (i) a (complete)
sequence can have maximum① elements; (ii) the elements which we are able to
observe in this sequence depend on the adopted numeral system. Moreover, a distic-
tion between physical and ideal Turing machines should be introduced. Specifically,
the machines defined in Section 2 (e.g. the Single-Tape Turing machine of Section
2.1) are called ideal Turing machine,T I . Howerver, in order to study the limita-
tions of practical automatic computations, we also consider machines,T P , that can
be constructed physically. They are identical toT I but are able to work only a finite
time and can produce only finite outputs. In this Section, both kinds of machines
are analyzed from the point of view of their outputs, called by Turing ‘computable
numbers’ or ‘computable,sequences’, and from the point of view of computations
that the machines can execute .

Let us consider first a physical machineT P and discuss about the number of
computational steps it can execute and how the obtained results then can be inter-
preted by a human observer (e.g. the researcher) . We supposethat its output is
written on the tape using an alphabetΣ containingb symbols{0,1, . . .b−2,b−1}
whereb is a finite number (Turing usesb = 10).Thus, the output consists of a se-
quence of digits that can be viewed as a number in a positionalsystemB with the
radix b. By definition,T P should stop after a finite number of iterations. The mag-
nitude of this value depends on the physical construction ofthe machine, the way
the notion ‘iteration’ has been defined, etc., but in any casethis number is finite.
A physical machineT P stops in two cases: (i) it has finished the execution of its
program and stops; (ii) it stops because its breakage. In both cases the output se-
quence

(a1a2a3 . . .ak−1,ak)b, ai ∈ {0,1, . . .b−2,b−1}, 1≤ i ≤ k,

of T P has a finite lengthk.
If the maximal length of the output sequence that can be computed byT P is

equal to a finite numberKT P , then it followsk ≤ KT P . This means that there exist
problems that cannot be solved byT P if the length of the output outnumbersKT P .
If a physical machineT P has stopped after it has printedKT P symbols, then it is

A new perspective on Turing machines 17

not clear whether the obtained output is a solution or just a result of the depletion of
its computational resources.
In particular, with respect to the halting problem it follows that all algorithms stop
onT P .

In order to be able to read and to understand the output, the researcher (the user)
should know a positional numeral systemU with an alphabet{0,1, . . .u−2,u−1}
whereu ≥ b. Otherwise, the output cannot be decoded by the user. Moreover, the
researcher must be able to observe a number of symbols at least equal to the maximal
length of the output sequence that can be computed by machine(i.e.,KU ≥ KT P).

If the situationKU < KT P holds, then this means that the user is not able to inter-
pret the obtained result. Thus, the numberK∗ = min{KU ,KT P } defines the length
of the outputs that can be computed and interpreted by the user.
As a consequence, algorithms producing outputs having morethanK∗ positions be-
come less interesting from the practical point of view.

After having introduced the distinction between physical and ideal Turing ma-
chines, let us analyze and observe them through the lens of the Grossone Method-
ology. Specifically, the results obtained and discussed in [42] for deterministic and
non-deterministic Single-tape Turing machines are summarized in Section 4.2 and
4.4 respectively; whereas, Section 4.3 reports additionalresults for Multi-tape Tur-
ing machines (see [43]).

4.2 Observing Single-Tape Turing machines

As stated in Section 4.1, single-tape ideal Turing machinesM I (see Section 2.1)
can produce outputs with an infinite number of symbolsk. However, in order to be
observable in a sequence, an output should havek ≤ ① (see Section 3). Starting
from these considerations the following theorem can be introduced.

Theorem 3. Let M be the number of all possible complete computable sequences
that can be produced by ideal single-tape Turing machines using outputs being nu-
merals in the positional numeral systemB . Then it follows M≤ b①.

Proof.This result follows from the definitions of the complete sequence and the
form of numerals

(a−1a−2 . . .a−(①−1)a−①)b, a−i ∈ {0,1, . . .b−2,b−1}, 1≤ i ≤ ①,

that are used in the positional numeral systemB . 2

Corollary 3. Let us consider an ideal Turing machineM I
1 working with the alpha-

bet{0,1,2} and computing the following complete computable sequence

18 Yaroslav D. Sergeyev and Alfredo Garro

0,1,2,0,1,2,0,1,2, . . . 0,1,2,0,1,2︸ ︷︷ ︸
① positions

. (22)

Then ideal Turing machines working with the output alphabet{0,1} cannot produce
observable in a sequence outputs computing (22).

Since the numeral 2 does not belong to the alphabet{0,1} it should be coded by
more than one symbol. One of codifications using the minimal number of symbols
in the alphabet{0,1} necessary tocode numbers 0,1,2 is {00,01,10}. Then the
output corresponding to (22) and computed in this codification should be

00,01,10,00,01,10,00,01,10, . . . 00,01,10,00,01,10. (23)

Since the output (22) contains grossone positions, the output (23) should contain
2① positions. However, in order to be observable in a sequence,(23) should not
have more than grossone positions. This fact completes the proof. 2

The mathematical language used by Turing did not allow one todistinguish these
two machines. Now we are able to distinguish a machine from another also when
we consider infinite sequences. Turing’s results and the newones do not contradict
each other. Both languages observe and describe the same object (computable se-
quences) but with different accuracies.

It is not possible to describe a Turing machine (the object ofthe study) without
the usage of a numeral system (the instrument of the study). As a result, it becomes
not possible to speak about an absolute number of all possible Turing machinesT I .
It is always necessary to speak about the number of all possible Turing machines
T I expressible in a fixed numeral system (or in a group of them).

Theorem 4. The maximal number of complete computable sequences produced by
ideal Turing machines that can be enumerated in a sequence isequal to①.

We have established that the number of complete computable sequences that can
be computed using a fixed radixb is less or equalb①. However, we do not know
how many of them can be results of computations of a Turing machine. Turing es-
tablishes that their number is enumerable. In order to obtain this result, he used the
mathematical language developed by Cantor and this language did not allow him
to distinguish sets having different infinite numbers of elements. The introduction
of grossone gives a possibility to execute a more precise analysis and to distinguish
within enumerable sets infinite sets having different numbers of elements. For in-

stance, the set of even numbers has①
2 elements and the set of integer numbers has

2①+1 elements. If the number of complete computable sequences,MT I , is larger
than①, then there can be differen sequential processes that enumerate different se-
quences of complete computable sequences. In any case, eachof these enumerating
sequential processes cannot contain more than grossone members.

A new perspective on Turing machines 19

4.3 Observing Multi-tape Turing machines

Before starting to analyze the computations performed by anideal k-tapes Turing

machine (withk ≥ 2) M I
K =

〈
Q,Γ, b̄,Σ,q0,F,δ(k)

〉
(see (1), see Section 2.2), it is

worth to make some considerations about the process of observation itself in the
light of the Grossone methodology. As discussed above, if wewant to observe the
process of computation performed by a Turing machine while it executes an al-
gorithm, then we have to execute observations of the machinein a sequence of
moments. In fact, it is not possible to organize a continuousobservation of the ma-
chine. Any instrument used for an observation has its accuracy and there always be
a minimal period of time related to this instrument allowingone to distinguish two
different moments of time and, as a consequence, to observe (and to register) the
states of the object in these two moments. In the period of time passing between
these two moments the object remains unobservable.

Since our observations are made in a sequence, the process ofobservations can
have at maximum① elements. This means that inside a computational process itis
possible to fix more than grossone steps (defined in a way) but it is not possible to
count them one by one in a sequence containing more than grossone elements. For
instance, in a time interval[0,1), up tob① numerals of the type (20) can be used
to identify moments of time but not more than grossone of themcan be observed
in a sequence. Moreover, it is important to stress that any process itself, considered
independently on the researcher, is not subdivided in iterations, intermediate results,
moments of observations, etc. The structure of the languagewe use to describe
the process imposes what we can say about the process (see [42] for a detailed
discussion).

On the basis of the considerations made above, we should choose the accuracy
(granularity) of the process of the observation of a Turing machine; for instance we
can choose a single operation of the machine such as reading asymbol from the
tape, or moving the tape, etc. However, in order to be close asmuch as possible to
the traditional results, we consider an application of the transition function of the
machine as our observation granularity (see Section 2).

Moreover, concerning the output of the machine, we considerthe symbols written
on all the k tapes of the machine by using, on each tapei, with 1 ≤ i ≤ k, the
alphabetΣi of the tape, containingbi symbols, plus the blank symbol (b̄). Due to
the definition of complete sequence (see Section 3) on each tape at least① symbols
can be produced and observed. This means that on a tapei, after the last symbols
belonging to the tape alphabetΣi , if the sequence is not complete (i.e., if it has
less than① symbols) we can consider a number of blank symbols (b̄) necessary
to complete the sequence. We say that we are considering acomplete outputof a
k-tapes Turing machine when on each tape of the machine we consider a complete
sequence of symbols belonging toΣi ∪{b̄}.

Theorem 5. Let M I
K =

〈
Q,Γ, b̄,Σ,q0,F,δ(k)

〉
be an ideal k-tapes, k≥ 2, Turing

machine. Then, a complete output of the machine will resultsin k① symbols.

20 Yaroslav D. Sergeyev and Alfredo Garro

Proof.Due to the definition of the complete sequence, on each tape atmaximum
① symbols can be produced and observed and thus by consideringa complete se-
quence on each of the k tapes of the machine the complete output of the machine
will result in k① symbols. 2

Having proved that a complete output that can be produced by ak-tapes Turing
machine results ink① symbols, it is interesting to investigate what part of the com-
plete output produced by the machine can be observed in a sequence taking into
account that it is not possible to observe in a sequence more than① symbols (see
Section 3). As examples, we can decide to make in a sequence one of the following

observations: (i)① symbols on one among thek-tapes of the machine, (ii)①k sym-

bols on each of thek-tapes of the machine; (iii)①2 symbols on 2 among thek-tapes
of the machine, an so on.

Theorem 6. Let M I
K =

〈
Q,Γ, b̄,Σ,q0,F,δ(k)

〉
be an ideal k-tapes, k≥ 2, Turing

machine. Let M be the number of all possible complete outputsthat can be produced
byM I

K . Then it follows M= ∏k
i=1 (bi +1)①.

Proof.Due to the definition of the complete sequence, on each tapei, with 1≤ i ≤
k, at maximum① symbols can be produced and observed by using thebi symbols
of the alphabetΣi of the tape plus the blank symbol (b̄); as a consequence, the
number of all the possible complete sequences that can be produced and observed
on a tapei is (bi +1)①. A complete output of the machine is obtained by considering
a complete sequence on each of the thek-tapes of the machine, thus by considering
all the possible complete sequences that can be produced andobserved on each of
the k tapes of the machine, the numberM of all the possible complete outputs will
results in∏k

i=1 (bi +1)①. 2

As the numberM = ∏k
i=1 (bi +1)① of complete outputs that can be produced

by M K is larger than grossone, then there can be different sequential enumerating
processes that enumerate complete outputs in different ways, in any case, each of
these enumerating sequential processes cannot contain more than grossone members
(see Section 3).

4.4 Comparing different Multi-tape machines and Multi and
Single-tape machines

In the classical framework idealk-tape Turing machines have the same computa-
tional power of Single-tape Turing machines and given a Multi-tape Turing ma-
chineM I

K it is always possible to define a Single-tape Turing machine which is able
to fully simulate its behavior and therefore to completely execute its computations.
As showed for Single-tape Turing machine (see [42]), the Grossone methodology
allows us to give a more accurate definition of the equivalence among different ma-
chines as it provides the possibility not only to separate different classes of infinite
sets with respect to their cardinalities but also to measurethe number of elements

A new perspective on Turing machines 21

of some of them. With reference to Multi-tape Turing machines, the Single-tape
Turing machines adopted for their simulation use a particular kind of tape which is
divided into tracks (multi-track tape). In this way, if the tape hasm tracks, the head
is able to access (for reading and/or writing) all them characters on the tracks dur-
ing a single operation. This tape organization leads to a straightforward definition of
the behavior of a Single-tape Turing machine able to completely execute the com-
putations of a given Multi-tape Turing machine (see Section2.2). However, the so
defined Single-tape Turing machineM I , to simulatet computational steps ofM I

K ,
needs to executeO(t2) transitions (t2+ t in the worst case) and to use an alphabet
with 2k(|Σ1|+1)∏k

i=2(|Σi |+2) symbols (again see Section 2.2). By exploiting the
Grossone methodology is is possibile to obtain the following result that has a higher
accuracy with respect to that provided by the traditional framework.

Theorem 7. Let us considerM I
K =

〈
Q,Γ, b̄,Σ,q0,F,δ(k)

〉
,a k-tapes, k≥ 2, Turing

machine, whereΣ =
⋃k

i=1 Σi is given by the union of the symbols in the k tape al-
phabetsΣ1, . . . ,Σk andΓ = Σ∪{b̄}. If this machine performs t computational steps
such that

t 6
1
2
(
√

4①+1−1), (24)

then there existsM I
1 = {Q′,Γ′, b̄,Σ′,q′0,F

′,δ′}, an equivalent Single-tape Turing
machine with|Γ′| = 2k(|Σ1|+1)∏k

i=2(|Σi |+2), which is able to simulateM I
K and

can be observed in a sequence.

Proof. Let us recall that the definition ofM I
1 requires for a Single-tape to be

divided into 2k tracks;k tracks for storing the characters in thek tapes ofM I
K and

k tracks for signing through the marker↓ the positions of thek heads on thek
tapes ofM I

k (see Section 2.2). The transition functionδ(k) of the k-tapes machine
is given byδ(k)(q1,ai1, . . . ,ai k) = (q j ,a j 1, . . . ,a j k,zj 1, . . . ,zj k), with zj 1, . . . ,zj k ∈
{R,L,N}; as a consequence the corresponding transition functionδ′ of the Single-
tape machine, for each transition specified byδ(k) must individuate the current state
and the position of the marker for each track and then write onthe tracks the required
symbols, move the markers and go in another internal state. For each computational
step ofM I

K , M I
1 must execute a sequence of steps for covering the portion of tapes

between the two most distant markers. As in each computational step a marker can
move at most of one cell and then two markers can move away eachother at most
of two cells, aftert steps ofM I

K the markers can be at most 2t cells distant, thus
if M I

K executest steps,M I
1 executes at most: 2∑t

i=1 i = t2+ t steps. In order to be
observable in a sequence the numbert2+ t of steps, performed byM I

1 to simulatet
steps ofM I

K , must be less than or equal to①. Namely, it should bet2+ t 6①. The
fact that this inequality is satisfied fort 6 1

2(
√

4①+1−1) completes the proof.2

22 Yaroslav D. Sergeyev and Alfredo Garro

4.5 Comparing deterministic and non-deterministic Turing
machines

Let us discuss the traditional and new results regarding thecomputational power of
deterministic and non-deterministic Turing machines.

Classical results show an exponential growth of the time required for reaching
a final configuration by the deterministic Turing machineMD with respect to the
time required by the non-deterministic Turing machineMN, assuming that the time
required for both machines for a single step is the same. However, in the classic
theory on Turing machines it is not known if there is a more efficient simulation of
MN. In other words, it is an important and open problem of Computer Science theory
to demonstrate that it is not possible to simulate a non-deterministic Turing machine
by a deterministic Turing machine with a sub-exponential numbers of steps.

Let us now return to the new mathematical language. Since themain interest to
non-deterministic Turing machines (5) is related to their theoretical properties, here-
inafter we start by a comparison of ideal deterministic Turing machines,T I , with
ideal non-deterministic Turing machinesT I N . Physical machinesT P andT P N are
considered at the end of this section. By taking into accountthe results of Section
4.4, the proposed approach can be applied both to single and multi-tape machines,
however, single-tape machines are considered in the following.

Due to the analysis made in Section 4.3, we should choose the accuracy (gran-
ularity) of processes of observation of both machines,T I andT I N . In order to be
close as much as possible to the traditional results, we consider again an applica-
tion of the transition function of the machine as our observation granularity. With
respect toT I N this means that the nodes of the computational tree are observed.
With respect toT I we consider sequences of such nodes. For both cases the ini-
tial configuration is not observed, i.e., we start our observations from level 1 of the
computational tree.

This choice of the observation granularity is particularlyattractive due to its ac-
cordance with the traditional definitions of Turing machines (see definitions (1) and
(5)). A more fine granularity of observations allowing us to follow internal oper-
ations of the machines can be also chosen but is not so convenient. In fact, such
an accuracy would mix internal operations of the machines with operations of the
algorithm that is executed. A coarser granularity could be considered, as well. For
instance, we could define as a computational step two consecutive applications of
the transition function of the machine. However, in this case we do not observe all
the nodes of the computational tree. As a consequence, we could miss some results
of the computation as the machine could reach a final configuration before complet-
ing an observed computational step and we are not able to observe when and on
which configuration the machine stopped. Then, fixed the chosen level of granular-
ity the following result holds immediately.

Theorem 8. (i) With the chosen level of granularity no more than① computational
steps of the machineT I can be observed in a sequence. (ii) In order to give possi-
bility to observe at least one computational path of the computational tree ofT I N

A new perspective on Turing machines 23

Fig. 2 The maximum number of computational steps of the machineT I that can be observed in a
sequence

from the level 1 to the level k, the depth, k≥ 1, of the computational tree cannot be
larger than grossone, i.e., k≤ ①.

Proof.Both results follow from the analysis made in Section 3.1 andTheorem 1.
2

In Figure 2 the first result of Theorem 8 concerning the maximum number of
computational steps of the machineT I that can be observed in a sequence is ex-
emplified with reference to the computational tree of the machine introduced in
Section 2.3.
Similarly, the second result of Theorem 8 concerning the depth of the computational
tree ofT I N is exemplified in Figure 3.

Corollary 4. Suppose that d is the non-deterministic degree ofT I N and S is the
number of leaf nodes of the computational tree with a depth k representing the pos-
sible results of the computation ofT I N . Then it is not possible to observe all S
possible results of the computation ofT I N if the computational tree ofT I N is
complete and dk >①.

Proof.For the number of leaf nodes of the tree,S, of a generic non-deterministic
Turing machineT I N the estimateS≤ dk holds. In particular,S= dk if the computa-
tional tree is complete, that is our case. On the other hand, it follows from Theorem 1

24 Yaroslav D. Sergeyev and Alfredo Garro

Fig. 3 An observable computational path of the machineT I

that any sequence of observations cannot have more than grossone elements. As a
consequence, the same limitation holds for the sequence of observations of the leaf
nodes of the computational tree. This means that we are not able to observe all the
possible results of the computation of our non-deterministic Turing machineT I N

if dk >①. 2

In Figure 4 the result of Corollary 4 concerning the maximum number of compu-
tational results of the machineT I that can be observed in a sequence is exemplified
with reference to the computational tree of the machine introduced in Section 2.3 .

Corollary 5. Any sequence of observations of the nodes of the computational tree
of a non-deterministic Turing machineT I N cannot observe all the nodes of the tree
if the number of nodes N is such that N>①.

Proof.The corollary follows from Theorems 1, 8, and Corollary 4. 2

These results lead to the following theorem again under the same assumption
about the chosen level of granularity of observations, i.e., the nodes of the compu-
tational tree ofT I N representing configurations of the machine are observed.

Theorem 9. Given a non-deterministic Turing machineT I N with a depth, k, of the
computational tree and with a non-deterministic degree d such that

A new perspective on Turing machines 25

Fig. 4 Observable results of of the machineT I

d(kdk+1− (k+1)dk+1)
(d−1)2 6 ①, (25)

then there exists an equivalent deterministic Turing machine T I which is able to
simulateT I N and can be observed.

Proof. For simulatingT I N , the deterministic machineT I executes a breadth-
first visit of the computational tree ofT I N . In this computational tree, whose depth
is 16 k6①, each node has, by definition, a number of childrenc where 06 c6 d.
Let us suppose that the tree is complete, i.e., each node hasc= d children. In this
case the tree hasdk leaf nodes andd j computational paths of lengthj for each
1 6 j 6 k. Thus, for simulating all the possible computations ofT I N , i.e., for a
complete visiting the computational tree ofT I N and considering all the possible
computational paths consisting ofj computational steps for each 16 j 6 k, the
deterministic machineT I will execute

KT I =
k

∑
j=1

jd j (26)

steps (note that if the computational tree ofT I N is not complete,T I will execute
less thanKT I). Due to Theorems 1 and 8, and Corollary 5, it follows that in order

26 Yaroslav D. Sergeyev and Alfredo Garro

to prove the theorem it is sufficient to show that under conditions of the theorem it
follows that

KT I 6 ①. (27)

To do this let us use the well known formula

k

∑
j=0

d j =
dk+1−1

d−1
, (28)

and derive both parts of (28) with respect tod. As the result we obtain

k

∑
j=1

jd j−1 =
kdk+1− (k+1)dk+1

(d−1)2 . (29)

Notice now that by using (26) it becomes possible to represent the numberKT I as

KT I =
k

∑
j=1

jd j = d
k

∑
j=1

jd j−1.

This representation together with (29) allow us to write

KT I =
d(kdk+1− (k+1)dk+1)

(d−1)2 (30)

Due to assumption (25), it follows that (27) holds. This factconcludes the proof of
the theorem. 2

Corollary 6. Suppose that the length of the input sequence of symbols of a non-
deterministic Turing machineT I N is equal to a number n andT I N has a complete
computational tree with the depth k such that k= nl , i.e., polynomially depends on
the length n. Then, if the values d,n, and l satisfy the following condition

d(nl dnl+1− (nl +1)dnl
+1)

(d−1)2 6 ①, (31)

then: (i) there exists a deterministic Turing machineT I that can be observed and
able to simulateT I N ; (ii) the number, KT I , of computational steps required to a
deterministic Turing machineT I to simulateT I N for reaching a final configuration
exponentially depends on n.

Proof.The first assertion follows immediately from theorem 9. Let us prove the
second assertion. Since the computational tree ofT I N is complete and has the depth
k, the corresponding deterministic Turing machineT I for simulatingT I N will ex-
ecuteKT I steps whereKT I is from (27). Since condition (31) is satisfied forT I N ,
we can substitutek= nl in (30). As the result of this substitution and (31) we obtain
that

A new perspective on Turing machines 27

KT I =
d(nl dnl+1− (nl +1)dnl

+1)
(d−1)2 6 ①, (32)

i.e., the number of computational steps required to the deterministic Turing machine
T I to simulate the non-deterministic Turing machineT I N for reaching a final con-
figuration isKT I 6 ① and this number exponentially depends on the length of the
sequence of symbols provided as input toT I N . 2

Results described in this section show that the introduction of the new mathemat-
ical language including grossone allows us to perform a moresubtle analysis with
respect to traditional languages and to introduce in the process of this analysis the
figure of the researcher using this language (more precisely, to emphasize the pres-
ence of the researcher in the process of the description of automatic computations).
These results show that there exist limitations for simulating non-deterministic Tur-
ing machines by deterministic ones. These limitations can be viewed now thanks to
the possibility (given because of the introduction of the new numeral①) to observe
final points of sequential processes for both cases of finite and infinite processes.

Theorems 8, 9, and their corollaries show that the discovered limitations and
relations between deterministic and non-deterministic Turing machines have strong
links with our mathematical abilities to describe automatic computations and to con-
struct models for such descriptions. Again, as it was in the previous cases studied
in this chapter, there is no contradiction with the traditional results because both
approaches give results that are correct with respect to thelanguages used for the
respective descriptions of automatic computations.

We conclude this section by the note that analogous results can be obtained for
physical machinesT P andT P N , as well. In the case of ideal machines, the pos-
sibility of observations was limited by the mathematical languages. In the case of
physical machines they are limited also by technical factors (we remind again the
analogy: the possibilities of observations of physicists are limited by their instru-
ments). In any given moment of time the maximal number of iterations,Kmax, that
can be executed by physical Turing machines can be determined. It depends on the
speed of the fastest machineT P available at the current level of development of
the humanity, on the capacity of its memory, on the time available for simulating
a non-deterministic machine, on the numeral systems known to human beings, etc.
Together with the development of technology this number will increase but it will
remain finite and fixed in any given moment of time. As a result,theorems presented
in this section can be re-written forT P andT P N by substituting grossone withKmax

in them.

5 Concluding Remarks

Since the beginning of the last century, the fundamental nature of the concept of
automatic computationsattracted a great attention of mathematicians and computer
scientists (see [4, 14, 15, 16, 23, 24, 27, 44]). The first studies had as their ref-

28 Yaroslav D. Sergeyev and Alfredo Garro

erence context the David Hilbert programme, and as their reference language that
introduced by Georg Cantor [3]. These approaches lead to different mathematical
models of computing machines (see [1, 6, 9]) that, surprisingly, were discovered
to be equivalent (e.g., anything computable in theλ-calculus is computable by a
Turing machine). Moreover, these results, and expecially those obtained by Alonzo
Church, Alan Turing [4, 10, 44] and Kurt G̈odel, gave fundamental contributions to
demonstrate that David Hilbert programme, which was based on the idea that all of
the Mathematics could be precisely axiomatized, cannot be realized.

In spite of this fact, the idea of finding an adequate set of axioms for one or
another field of Mathematics continues to be among the most attractive goals for
contemporary mathematicians. Usually, when it is necessary to define a concept or
an object, logicians try to introduce a number of axioms describing the object in
the absolutely best way. However, it is not clear how to reachthis absoluteness;
indeed, when we describe a mathematical object or a concept we are limited by
the expressive capacity of the language we use to make this description. A richer
language allows us to say more about the object and a weaker language – less.
Thus, the continuous development of the mathematical (and not only mathematical)
languages leads to a continuous necessity of a transcription and specification of
axiomatic systems. Second, there is no guarantee that the chosen axiomatic system
defines ‘sufficiently well’ the required concept and a continuous comparison with
practice is required in order to check the goodness of the accepted set of axioms.
However, there cannot be again any guarantee that the new version will be the last
and definitive one. Finally, the third limitation already mentioned above has been
discovered by G̈odel in his two famous incompleteness theorems (see [10]).

Starting from these considerations, in the chapter, Singleand Multi-tape Turing
machines have been described and observed through the lens of the Grossone lan-
guage and methodology . This new language, differently fromthe traditional one,
makes it possible to distinguish among infinite sequences ofdifferent length so en-
abling a more accurate description of Single and Multi-tapeTuring machines. The
possibility to express the length of an infinite sequence explicitly gives the pos-
sibility to establish more accurate results regarding the equivalence of machines in
comparison with the observations that can be done by using the traditional language.

It is worth noting that the traditional results and those presented in the chapter
do not contradict one another. They are just written by usingdifferent mathematical
languages having different accuracies. Both mathematicallanguages observe and
describe the same objects – Turing machines – but with different accuracies. As a
result, both traditional and new results are correct with respect to the mathematical
languages used to express them and correspond to different accuracies of the obser-
vation. This fact is one of the manifestations of the relativity of mathematical results
formulated by using different mathematical languages in the same way as the usage
of a stronger lens in a microscope gives a possibility to distinguish more objects
within an object that seems to be unique when viewed by a weaker lens.

Specifically, the Grossone language has allowed us to give the definition ofcom-
plete outputof a Turing machine, to establish when and how the output of a ma-
chine can be observed, and to establish a more accurate relationship between Multi-

A new perspective on Turing machines 29

tape and Single-tape Turing machines as well as between deterministic and non-
deterministic ones. Future research efforts will be gearedto apply the Grossone
language and methodology to the description and observation of new and emerging
computational paradigms.

References

1. G. Ausiello, F. D’Amore, and G. Gambosi.Linguaggi, modelli, complessità. Franco Angeli
Editore, Milan, 2 edition, 2006.

2. V. Benci and M. Di Nasso. Numerosities of labeled sets: a new way ofcounting.Advances in
Mathematics, 173:50–67, 2003.

3. G. Cantor.Contributions to the founding of the theory of transfinite numbers. Dover Publica-
tions, New York, 1955.

4. A. Church. An unsolvable problem of elementary number theory. American Journal of Math-
ematics, 58:345–363, 1936.

5. J.H. Conway and R.K. Guy.The Book of Numbers. Springer-Verlag, New York, 1996.
6. S. Barry Cooper.Computability Theory. Chapman Hall/CRC, 2003.
7. S. De Cosmis and R. De Leone. The use of Grossone in mathematical programming and

operations research.Applied Mathematics and Computation, 218(16):8029–8038, 2012.
8. L. D’Alotto. Cellular automata using infinite computations.Applied Mathematics and Com-

putation, 218(16):8077–8082, 2012.
9. M. Davis.Computability& Unsolvability. Dover Publications, New York, 1985.

10. K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme.Monatshefte f̈ur Mathematik und Physik, 38:173–198, 1931.

11. P. Gordon. Numerical cognition without words: Evidence from Amazonia.Science, 306(15
October):496–499, 2004.

12. J. Hopcroft and J. Ullman.Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, Reading Mass., 1st edition, 1979.

13. D.I. Iudin, Ya.D. Sergeyev, and M. Hayakawa. Interpretation of percolation in terms of infinity
computations.Applied Mathematics and Computation, 218(16):8099–8111, 2012.

14. S.C. Kleene.Introduction to metamathematics. D. Van Nostrand, New York, 1952.
15. A.N. Kolmogorov. On the concept of algorithm.Uspekhi Mat. Nauk, 8(4):175–176, 1953.
16. A.N. Kolmogorov and V.A. Uspensky. On the definition of algorithm. Uspekhi Mat. Nauk,

13(4):3–28, 1958.
17. G.W. Leibniz and J.M. Child.The Early Mathematical Manuscripts of Leibniz. Dover Publi-

cations, New York, 2005.
18. T. Levi-Civita. Sui numeri transfiniti.Rend. Acc. Lincei, Series 5a, 113:7–91, 1898.
19. G. Lolli. Metamathematical investigations on the theory ofGrossone.to appear in Applied

Mathematics and Computation.
20. G. Lolli. Infinitesimals and infinites in the history of mathematics: A brief survey. Applied

Mathematics and Computation, 218(16):7979–7988, 2012.
21. M. Margenstern. Using Grossone to count the number of elements of infinite sets and the con-

nection with bijections.p-Adic Numbers, Ultrametric Analysis and Applications, 3(3):196–
204, 2011.

22. M. Margenstern. An application of Grossone to the study of a family of tilings of the hyper-
bolic plane.Applied Mathematics and Computation, 218(16):8005–8018, 2012.

23. A.A. Markov Jr. and N.M. Nagorny.Theory of Algorithms. FAZIS, Moscow, second edition,
1996.

24. J.P. Mayberry.The Foundations of Mathematics in the Theory of Sets. Cambridge University
Press, Cambridge, 2001.

25. I. Newton.Method of Fluxions. 1671.

30 Yaroslav D. Sergeyev and Alfredo Garro

26. P. Pica, C. Lemer, V. Izard, and S. Dehaene. Exact and approximate arithmetic in an amazonian
indigene group.Science, 306(15 October):499–503, 2004.

27. E. Post. Finite combinatory processes – formulation 1.Journal of Symbolic Logic, 1:103–105,
1936.

28. A. Robinson.Non-standard Analysis. Princeton Univ. Press, Princeton, 1996.
29. E.E. Rosinger. Microscopes and telescopes for theoreticalphysics: How rich locally and large

globally is the geometric straight line?Prespacetime Journal, 2(4):601–624, 2011.
30. Ya.D. Sergeyev.Arithmetic of Infinity. Edizioni Orizzonti Meridionali, CS, 2003.
31. Ya.D. Sergeyev. Blinking fractals and their quantitative analysis using infinite and infinitesi-

mal numbers.Chaos, Solitons& Fractals, 33(1):50–75, 2007.
32. Ya.D. Sergeyev. A new applied approach for executing computations with infinite and in-

finitesimal quantities.Informatica, 19(4):567–596, 2008.
33. Ya.D. Sergeyev. Evaluating the exact infinitesimal valuesof area of Sierpinski’s carpet and

volume of Menger’s sponge.Chaos, Solitons& Fractals, 42(5):3042–3046, 2009.
34. Ya.D. Sergeyev. Numerical computations and mathematical modelling with infinite and in-

finitesimal numbers.Journal of Applied Mathematics and Computing, 29:177–195, 2009.
35. Ya.D. Sergeyev. Numerical point of view on Calculus for functions assuming finite, infinite,

and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Analysis
Series A: Theory, Methods& Applications, 71(12):e1688–e1707, 2009.

36. Ya.D. Sergeyev. Counting systems and the First Hilbert problem. Nonlinear Analysis Series
A: Theory, Methods& Applications, 72(3-4):1701–1708, 2010.

37. Ya.D. Sergeyev. Lagrange Lecture: Methodology of numerical computations with infinities
and infinitesimals.Rendiconti del Seminario Matematico dell’Università e del Politecnico di
Torino, 68(2):95–113, 2010.

38. Ya.D. Sergeyev. Higher order numerical differentiationon the infinity computer.Optimization
Letters, 5(4):575–585, 2011.

39. Ya.D. Sergeyev. On accuracy of mathematical languages usedto deal with the Riemann zeta
function and the Dirichlet eta function.p-Adic Numbers, Ultrametric Analysis and Applica-
tions, 3(2):129–148, 2011.

40. Ya.D. Sergeyev. Using blinking fractals for mathematical modelling of processes of growth in
biological systems.Informatica, 22(4):559–576, 2011.

41. Ya.D. Sergeyev. Solving ordinary differential equations by working with infinitesimals nu-
merically on the infinity computer.Applied Mathematics and Computation, 219(22):10668–
10681, 2013.

42. Ya.D. Sergeyev and A. Garro. Observability of Turing machines: A refinement of the theory
of computation.Informatica, 21(3):425–454, 2010.

43. Ya.D. Sergeyev and A. Garro. Single-tape and Multi-tapeTuring Machines through the lens
of the Grossone methodology.The Journal of Supercomputing, 65(2):645–663, 2013.

44. A.M. Turing. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of London Mathematical Society, series 2, 42:230–265, 1936-1937.

45. M.C. Vita, S. De Bartolo, C. Fallico, and M. Veltri. Usage of infinitesimals in the Menger’s
Sponge model of porosity.Applied Mathematics and Computation, 218(16):8187–8196, 2012.

46. J. Wallis.Arithmetica infinitorum. 1656.
47. A.A. Zhigljavsky. Computing sums of conditionally convergent and divergent series using the

concept of Grossone.Applied Mathematics and Computation, 218(16):8064–8076, 2012.
48. A. Žilinskas. On strong homogeneity of two global optimization algorithms based on sta-

tistical models of multimodal objective functions.Applied Mathematics and Computation,
218(16):8131–8136, 2012.

