The Grossone methodology per spective on
Turing machines

Yaroslav D. Sergeyev and Alfredo Garro

Abstract This chapter discusses how the mathematical language asabstribe
and to observe automatic computations influences the ancwfathe obtained
results. The chapter presents results obtained by desgrémd observing dif-
ferent kinds of Turing machines (single and multi-tapeed®inistic and non-
deterministic) through the lens of a new mathematical laggunamed Grossone.
This emerging language is strongly based on three methgidalddeas borrowed
from Physics and applied to Mathematics: the distinctidmben the object (indeed
mathematical object) of an observation and the instrumsed for this observation;
interrelations holding between the object and the tool dsethe observation; the
accuracy of the observation determined by the tool. In tteptdr, the new results
are compared to those achievable by using traditional agest It is shown that
both languages do not contradict each other but observeesutide the same ob-
ject (Turing machines) but with different accuracies.

1 Introduction

Turing machines represent one of the simple abstract catipoél devices that can
be used to investigate the limits of computability . In thiepter, they are consid-
ered from several points of view that emphasize the impogamd the relativity of
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mathematical languages used to describe the Turing machrdeep investigation
is performed on the interrelations between mechanical ctatipons and their math-
ematical descriptions emerging when a human (the reseqstiaets to describe a
Turing machine (the object of the study) by different mathéoal languages (the
instruments of investigation).

In particular, we focus our attention on different kinds afifig machines (single
and multi-tape, deterministic and non-deterministic) bbyamizing and discussing
the results presented in [42] and [43] so to provide a comipemdf our multi-year
research on this subject.

The starting point is represented by numeral systethat we use to write down
numbers, functions, models, etc. and that are among ows tddhvestigation of
mathematical and physical objects. It is shown that numsrsiems strongly in-
fluence our capabilities to describe both the mathematiealpdoysical worlds. A
new numeral system introduced in [30, 32, 37]) for perfogniomputations with
infinite and infinitesimal quantities is used for the obs&oraof mathematical ob-
jects and studying Turing machines. The new methodologgsed on the principle
‘The part is less than the whole’ introduced by Ancient Geedee, e.g., Euclid’s
Common Notion 5) and observed in practice. It is applied tsetls and processes
(finite and infinite) and all numbers (finite, infinite, and mfesimal).

In order to see the place of the new approach in the histquanabrama of ideas
dealing with infinite and infinitesimal, see [19, 20, 21, 356, 32, 43]. The new
methodology has been successfully applied for studyingnaben of applications:
percolation (see [13, 45]), Euclidean and hyperbolic gaonisee [22, 29]), fractals
(see [31, 33, 40, 45]), numerical differentiation and ojation (see [7, 34, 38,
48]), ordinary differential equations (see [41]), infingeries (see [35, 39, 47]), the
first Hilbert problem (see [36]), and cellular automata (83

The rest of the chapter is structured as follows. In SectioBi2gle and Multi-
tape Turing machines are introduced along with “classigegdults concerning their
computational power and related equivalences; in Sectiar8ef introduction to
the new language and methodology is given whereas theioigxibn for analyzing
and observing the different types of Turing machines isudised in Section 4. It
shows that the new approach allows us to observe Turing meshiith a higher
accuracy giving so the possibility to better characterizé distinguish machines
which are equivalent when observed within the classicah&aork. Finally, Sec-
tion 5 concludes the chapter.

1 We are reminded thatrmumeralis a symbol or group of symbols that representsimber The
difference between numerals and numbers is the same as thewmiiéebetween words and the
things they refer to. Amumberis a concept that aumeralexpresses. The same number can be
represented by different numerals. For example, the symbolssé&ven’, and ‘VII' are different
numerals, but they all represent the same number.
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2 Turing machines

The Turing machine is one of the simple abstract computatidevices that can be
used to model computational processes and investigat@ite bf computability.
In the following subsections, deterministic Single and tidtdpe Turing machines
are described along with important classical results carieg their computational
power and related equivalences (see Section 2.1 and 2 &ctesby); finally, non-
deterministic Turing machines are introduced (see Se&igh

2.1 Single-Tape Turing machines

A Turing machine (see, e.g., [12, 44]) can be defined as alé-tup
M =(QF,b,%,q,F.5), (1)

whereQ is a finite and not empty set of stat€sis a finite set of symbold) € I is

a symbol called blankz. C {I" — b} is the set of input/output symbolgg € Q is the
initial state;F C Qs the set of final states;: {Q—F} xI' — QxT x {R/L,N} is

a partial function called the transition function, whéreneans leftR means right,
andN means no move .

Specifically, the machine is supplied with: (iYaperunning through it which is
divided into cells each capable of containing a sympell’, wherer is called the
tape alphabet, anole I is the only symbol allowed to occur on the tape infinitely
often; (ii) aheadthat can read and write symbols on the tape and move the tfipe le
and right one and only one cell at a time. The behavior of thehina is specified
by its transition functiond and consists of a sequence of computational steps ; in
each step the machine reads the symbol under the head anesapptransition
functionthat, given the current state of the machine and the symimtdétading on
the tape, specifies (if it is defined for these inputs): (i)shmboly € I" to write on
the cell of the tape under the head; (ii) the move of the tager(one cell left,R for
one cell rightN for no move); (iii) the next statg € Q of the machine.

2.1.1 Classical resultsfor Single-Tape Turing machines

Starting from the definition of Turing machine introducedwad, classical results
(see, e.g., [1]) aim at showing that different machinesimg=of provided tape and
alphabet have the same computational power, i.e., theybdeemexecute the same
computations. In particular, two main results are repopidw in an informal way.

Given a Turing machiner = {Q,I",b,Z, qo,F,d}, which is supplied with an infi-
nite tape, it is always possible to define a Turing machirle= {Q',["’,b,%’, qp, F’, &'}
which is supplied with a semi-infinite tape (e.g., a tape witkft boundary) and is
equivalent tav , i.e., is able to execute all the computationsiof
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Given a Turing machinesr = {Q,I",b,Z, qo,F,d}, it is always possible to define
a Turing machinem’ = {Q',I"",b,Z', ¢, F',&'} with || =1 andl" = ¥’ U {b},
which is equivalent tav , i.e., is able to execute all the computationsvof

It should be mentioned that these results, together withusii@l conclusion re-
garding the equivalences of Turing machines, can be irgggrin the following,
less obvious, way: they show that when we observe Turing mestby exploiting
the classical framework we are not able to distinguish, fleencomputational point
of view, Turing machines which are provided with alphabetgithg different num-
ber of symbols and/or different kind of tapes (infinite or sémfinite) (see [42] for
a detailed discussion).

2.2 Multi-tape Turing machines

Let us consider a variant of the Turing machine defined in (g a machine
is equipped with multiple tapes that can be simultaneoustessed and updated
through multiple heads (one per tape). These machines aaseldefor a more direct
and intuitive resolution of different kind of computatidpaoblems. As an example,
in checking if a string is palindrome it can be useful to have tapes on which
represent the input string so that the verification can beieffily performed by
reading a tape from left to right and the other one from rigHheft.

Moving towards a more formal definition, latapes,k > 2, Turing machine
(see [12]) can be defined (cf. (1)) as a 7-tuple

M = (Q.F.b.%.q0.F.5). 2)

whereZ = U, 5; is given by the union of the symbols in the k input/output al-
phabets;,...,%; ' = ZU{b} whereb is a symbol called blankQ is a finite and
not empty set of stategp € Q is the initial statef C Q is the set of final states;
3K {Q—F} xTyx---xT—=QxTyx---xTx{RLN}Kis a partial func-
tion called the transition function, whefg = Z; U {b},i = 1,...,k, L means leftR
means right, antl means no move .

This definition of3®) means that the machine executes a transition starting from
an internal state; and with thek heads (one for each tape) above the characters
ai1,...,aik, i.e., it 8¥(qy,&1,...,aK) = (0}, .-, Zjq, - -, Zj;) the machine
goes in the new statgj, write on the k tapes the characters, ...,a;, respec-
tively, and moves each of its k heads left, right or no movesgecified by the
z; e {RLIN}LI=1,... .k

A machine can adopt for each tape a different alphabet, icasg, for each tape,
as for the Single-tape Turing machines, the minimum portmtaining characters
distinct fromb is usually represented. In general, a typical configuraticanMulti-
tape machine consists of a read-only input tape, severdlaied write work tapes,
and a write-only output tape, with the input and output tegesessible only in one
direction. In the case oflatapes machine, the instant configuration of the machine,
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as for the Single-tape case, must describe the internel sit@ contents of the tapes
and the positions of the heads of the machine.

More formally, for ak-tapes Turing machinerx = <Q,F75,Z,qo,F, 6<")> with
> =K, Z; (see 2) a configuration of the machine is given by:

gHay T Ba#an 1T Bo#. .. #Hak T B, 3)

whereq € Q; a; € Zil' U{e} andB; € I'7Z; U{b}. A configuration idfinal if q € F.
The starting configuration usually requires the input stringn a tape, e.g., the
first tape so that € X%, and onlyb symbols on all the other tapes. However, it can be
useful to assume that, at the beginning of a computatiosgettepes have a starting
symbolZy ¢ I = JK_; T';. Therefore, in the initial configuration the head on the first
tape will be on the first character of the input stringvhereas the heads on the other
tapes will observe the symba@h, more formally, by re-placing; = % U {b,Zo} in
all the previous definition, a configuratiagpfa 1 Bi#ao 1T Bo#. .. #ak T Bk is an
initial configurationif a; =€,i=1,...,k,B1 € Z1,Bi = Zo,i = 2,..., kandq = 0p.

The application of the transition functia®f®' at a machine configuration (c.f.
(3)) defines a&omputational stepf a Multi-tape Turing machine . The set of com-
putational steps which bring the machine from the initiatfaguration into a final
configuration defines theomputationexecuted by the machine. As an example,
the computation of a Multi-tape Turing maching which computes the function
f,r, (X) can be represented as follows:

ot 1 X# T Zo#. . . #1 Zo My QT X# 1 T (X)#1 bH#...#1D ()

5
whereq € F and#k indicates the transition among machine configurations.

2.2.1 Classical resultsfor Multi-Tape Turing machines

It is worth noting that, although thetapes Turing machine can be used for a more
direct resolution of different kind of computational prebis, in the classical frame-
work it has the same computational power of the Single-tap&d machine. More
formally, given a Multi-tape Turing machine it is always pise to define a Single-
tape Turing machine which is able to fully simulate its bebaand therefore to
completely execute its computations. In particular, thegi&-tape Turing machines
adopted for the simulation use a particular kind of the tapékvis divided into
tracks (multi-track tape). In this way, if the tape hadracks, the head is able to
access (for reading and/or writing) all thecharacters on the tracks during a sin-
gle operation. If for then tracks the alphabefs,,... I, are adopted respectively,
the machine alphabétis such thatl| = |1 x --- x '] and can be defined by an
injective function from the seff x --- x 'y to the sefl’; this function will asso-
ciate the symbob in I' to the tuple(b,b,...,b) in [y x --- x ['m. In general, the
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elements of” which correspond to the elementslin x --- x ', can be indicated
by [&1,aip,...,am] Wherea;; € T';.

By adopting this notation it is possible to demonstrate ¢inagn ak-tapes Turing
machinea = {Q,I,b,Z,qo,F,8X} it is always possible to define a Single-tape
Turing machine which is able to simulateomputational steps affx = in O(t?)
transitions by using an alphabet wid{(2|I"|)*) symbols (see [1]) ..

The proof is based on the definition of a machimé = {Q'.I".b,Y’, g, F’,d'}
with a Single-tape divided intokZracks (see [1])k tracks for storing the characters
in thek tapes ofark andk tracks for signing through the markéethe positions of
thek heads on th& tapes ofark. As an example, this kind of tape can represent the
content of each tapes af and the position of each machine heads in its even and
odd tracks respectively. As discussed above, for obtaini&ingle-tape machine
able to represent thesk Racks, it is sufficient to adopt an alphabet with the reqiiire
cardinality and define an injective function which ass@sa 2k-ple characters of
a cell of the multi-track tape to a symbols in this alphabet.

The transition functio®® of thek-tapes machine is given B (a1, a1, . .., i) =
(Qj,ajq,---» @)y, Zjg, - -+, Zjy ), With z;1,..., 7, € {R,L,N}; as a consequence the cor-
responding transition functio' of the Single-tape machine, for each transition
specified byd® must individuate the current state and the position of theketa
for each track and then write on the tracks the required sysnbwve the markers
and go in another internal state. For each computationpldftesk, the machine
" must execute a sequence of steps for covering the portiapestbetween the
two most distant markers. As in each computational step &enaan move at most
of one cell and then two markers can move away each other dgtaohbso cells,
aftert steps ofark the markers can be at most&lls distant, thus ik executes
t stepsM’ executes at most: ;i =t2+t = O(t?) steps .

Moving to the cost of the simulation in terms of the numbermafuired characters
for the alphabet of the Single-tape machine, we recall [figt= |Z1| + 1 and that
M| = |Zi|+ 2 for 2<i < k. So by multiplying the cardinalities of these alphabets
we obtain that{['| = 2X(|Z3] + 1) [T, (1% + 2) = O((2max<i<k [ )¥).

2.3 Non-deterministic Turing machines

A non-deterministic Turing machine (see [12]) can be defifped 1)) as a 7-tuple
My =(Q,T,b,%,qo,F, &), (5)

whereQ is a finite and not empty set of stat€sis a finite set of symbold) € I is
a symbol called blanks. C {I" — b} is the set of input/output symbolgg € Q is the
initial state;F C Qis the set of final statedy : {Q—F} xI— 2(QxT x{R L,N})
is a partial function called the transition function, whenmmeans leftR means right,
andN means no move .
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As for a deterministic Turing machine (see (1)), the behaofavy is specified
by its transition functiordy and consists of a sequence of computational steps . In
each step, given the current state of the machine and theadytrib reading on
the tape, the transition functiaw, returns (if it is defined for these inputs) a set of
triplets each of which specifies: (i) a symbo& I to write on the cell of the tape
under the head; (ii) the move of the tajhefér one cell left,R for one cell right,N
for no move); (iii) the next statg € Q of the Machine. Thus, in each computational
step, the machine carmon-deterministicallexecute different computations, one for
each triple returned by the transition function.

An important characteristic of a non-deterministic Turmgchine (see, e.g., [1])
is its non-deterministic degree

d=v(ay) = _max_ |on(ay)l
defined as the maximal number of different configurationghehle in a single
computational step starting from a given configuration. Béleavior of the machine
can be then represented as a tree whose branches are thetationguthat the
machine can execute starting from the initial configuratepresented by the node
0 and nodes of the tree at the levels 1, 2, etc. representcuudrseconfigurations of
the machine.

Let us consider an example shown in Fig. 1 where a non-datéstiai machine
My having the non-deterministic degrde= 3 is presented. The depth of the com-
putational tree is equal tie In this example, it is supposed that the computational
tree ofay is complete (i.e., each node has exadtlhildren). Then, obviously, the
computational tree afry hasd® = 3% leaf nodes.

2.3.1 Classical resultsfor non-deterministic Turing machines

An important result for the classic theory on Turing machi(eee e.qg., [1]) is that
for any non-deterministic Turing machinéy there exists an equivalent determinis-
tic Turing machinemp. Moreover, if the depth of the computational tree generated
by sy is equal tok, then for simulatingyvy, the deterministic machine/p will
execute at most

k
Koo = § jd) = O(kd¥)
Mp J;

computational steps.

Intuitively, for simulatinga/y, the deterministic Turing machingp executes
a breadth-first visit of the computational tree @iy. If we consider the example
from Fig. 1 withk = 3, then the computational tree ofy hasdX = 27 leaf nodes
anddX = 27 computational paths consistinglof 3 branches (i.e., computational
steps) . Then, the tree contaiifs * = 9 computational paths consistinglof- 1 = 2
branches and“~? = 3 computational paths consistinglof- 2 = 1 branches . Thus,
for simulating all the possible computations @y, i.e., for complete visiting the
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Fig. 1 The computational tree of a non-deterministic Turing maching having the non-
deterministic degred = 3

computational tree ofry and considering all the possible computational paths of
j computational steps for each<Qj < k, the deterministic Turing maching/p

will executeK,,, steps. In particular, ify reaches a final configuration (e.g., it
accepts a string) ik > 0 steps and ifrp could consider only thek computational
paths which consist dé computational steps, it will executes at masf steps for
reaching this configuration.

These results show an exponential growth of the time reddaereaching a fi-
nal configuration by the deterministic Turing machimg with respect to the time
required by the non-deterministic Turing machimg;, assuming that the time re-
quired for both machines for a single step is the same. Howiembe classic theory
on Turing machines it is not known if there is a more efficiantgation of ary.

In other words, it is an important and open problem of Comp8teence theory to
demonstrate that it is not possible to simulate a non-détéstic Turing machine
by a deterministic Turing machine with a sub-exponentiahhars of steps.
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3 The Grossone L anguage and M ethodology

In this section, we give just a brief introduction to the neetblogy of the new
approach [30, 32] dwelling only on the issues directly edato the subject of the
chapter. This methodology will be used in Section 4 to studsirij machines and
to obtain some more accurate results with respect to thasénable by using the
traditional framework [4, 44] .

In order to start, let us remind that numerous trials havenbd@ne during
the centuries to evolve existing numeral systems in such ya that numerals
representing infinite and infinitesimal numbers could bduided in them (see
[2,3,5,17, 18, 25, 28, 46]). Since new numeral systems apgegrarely, in each
concrete historical period their significance for Matheosais very often underes-
timated (especially by pure mathematicians). In ordertstitate their importance,
let us remind the Roman numeral system that does not allowoogpress zero and
negative numbers. In this system, the expression IlI-X i;xdaterminate form. As
a result, before appearing the positional numeral systafrirasenting zero math-
ematicians were not able to create theorems involving zedonggative numbers
and to execute computations with them.

There exist numeral systems that are even weaker than thariRone. They se-
riously limit their users in executing computations. Letrasall a study published
recently inSciencgsee [11]). It describes a primitive tribe living in Amazar(Pi-
rahd). These people use a very simple numeral system for cauotire, two, many.
For Pirald, all quantities larger than two are just ‘many’ and suchraipens as 2+2
and 2+1 give the same result, i.e., ‘many’. Using their weakaral system Pirgh
are not able to see, for instance, numbers 3, 4, 5, and 6, tutexarithmetical op-
erations with them, and, in general, to say anything abasgdmumbers because in
their language there are neither words nor concepts for that

In the context of the present chapter, it is very importaat the weakness of
Piratd’s numeral system leads them to such results as

‘many’ +1 = ‘many’, ‘many’ +2 = ‘many’, (6)

which are very familiar to us in the context of views on infinitsed in the traditional
calculus
00+ 1=o00, 00+ 2 =00, (7

The arithmetic of Pirad involving the numeral ‘many’ has also a clear similarity
with the arithmetic proposed by Cantor for his Alephs

Oo+1=Oo, Oo+2=Oo, Oi+1= 0y, O1+2="0;. (8)

2 This similarity becomes even more pronounced if one considerthanédmazonian tribe —
Munduruki (see [26]) — who fail in exact arithmetic with numbers largarttb but are able to
compare and add large approximate numbers that are far beyeincidming range. Particularly,
they use the words ‘some, not many’ and ‘many, really many’ to distsigtwo types of large
numbers using the rules that are very similar to ones used by Candperate with 1o and1,
respectively.
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Thus, the modern mathematical numeral systems allow ustinguish a larger
quantity of finite numbers with respect to Pigabut give results that are similar to
those of Pirah when we speak about infinite quantities. This observatiadd us to
the following ideaProbably our difficulties in working with infinity is not coected
to the nature of infinity itself but is a result of inadequatemreral systems that we
use to work with infinity, more precisely, to express infinitenbers.

The approach developed in [30, 32, 37] proposes a numertdmnsythat uses
the same numerals for several different purposes for dgalith infinities and in-
finitesimals: in Analysis for working with functions thatrcassume different infi-
nite, finite, and infinitesimal values (functions can alseéhderivatives assuming
different infinite or infinitesimal values); for measurintfinite sets; for indicating
positions of elements in ordered infinite sequences ; inabiity theory, etc. (see
[7, 8, 13, 22, 29, 31, 33, 34, 35, 36, 38, 39, 40, 45, 47, 48]} inportant to em-
phasize that the new numeral system avoids situations aytee(6)—(8) providing
results ensuring that @ is a numeral written in this system then for aayi.e., a
can be finite, infinite, or infinitesimal) it followa+ 1 > a.

The new numeral system works as follows. A new infinite unitrefasure ex-
pressed by the numeral calledgrossonds introduced as the number of elements
of the setN, of natural numbers. Concurrently with the introductiorgodssone in
the mathematical language all other symbols (kkeCantor'sw, Og, 1, ..., €tc.)
traditionally used to deal with infinities and infinitesiraalre excluded from the lan-
guage because grossone and other numbers constructedswitp not only can
be used instead of all of them but can be used with a higheracgu Grossone is
introduced by describing its properties postulated by ttimite Unit Axiom (see
[32, 37]) added to axioms for real numbers (similarly, inertb pass from the set,
N, of natural numbers to the séi, of integers a new element — zero expressed by
the numeral 0 — is introduced by describing its properties) .

The new numerdl allows us to construct different numerals expressing wiffe
infinite and infinitesimal numbers and to execute computatiwith them. Let us
give some examples. For instance, in Analysis, indetermiftams are not present
and, for example, the following relations hold fdrand~* (that is infinitesimal),
as for any other (finite, infinite, or infinitesimal) numberpeassible in the new
numeral system

0-0=0.0=0, O-0=0, =1, 0%=1 1"=1, 0°=0, (9)

olo

o-0'=p'to=0 0O!'>0 D0O?>0 O0O'-0t=0 (10
0t 02
F =5 P =
The new approach gives the possibility to develop a new Asisl{see [35])

where functions assuming not only finite values but also it&fiand infinitesimal

1, O0H=1 0o0.0t=1 0.02%=0t @1

3 Analogously, when the switch from Roman numerals to the Arabés dras been done, numerals
X, V, |, etc. have been excluded from records using Arabic nafser
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ones can be studied. For all of them it becomes possibleradnte a new notion
of continuity that is closer to our modern physical knowledgunctions assuming
finite and infinite values can be differentiated and integptat

By using the new numeral system it becomes possible to measutain infinite
sets and to see, e.g., that the sets of even and odd number§lfiavelements
each. The sefZ, of integers has2+1 elements[{ positive elementd,] negative
elements, and zero). Within the countable sets and setadhaardinality of the
continuum (see [20, 36, 37]) it becomes possible to distaiginfinite sets having
different number of elements expressible in the numeraéesysising grossone and
to see that, for instance,

O
E<D—1<D<D+1<2D+1<252—1<2DZ<2DZ+1<

2024 2<28 1<l clyacidd «oP 1P <Py @2

Another key notion for our study of Turing machines is thaindihite sequence.
Thus, before considering the notion of the Turing machieenfthe point of view
of the new methodology, let us explain how the notion of tHaite sequence can
be viewed from the new positions.

3.1 Infinite sequences

Traditionally, aninfinite sequencéa, },a, € A, n € N, is defined as a function hav-
ing the set of natural numberd, as the domain and a sAtas the codomain. A
subsequencéhy} is defined as a sequenéa,} from which some of its elements
have been removed . In spite of the fact that the removal o¢léraents from{a, }
can be directly observed, the traditional approach doealiat one to register, in
the case where the obtained subsequébgg is infinite, the fact tha{b,} has less
elements than the original infinite sequereg}.

Let us study what happens when the new approach is used. Repoint of
view of the new methodology, an infinite sequence can be dersil in a dual way:
either as an object of a mathematical study or as a matheahatgtrument devel-
oped by human beings to observe other objects and proc&sstslet us consider
it as a mathematical object and show that the definition afiitefisequences should
be done more precise within the new methodology. In the ficdtge, a sequence
a1, a,...,ay hasn elements and we extend this definition directly to the indinit
case saying that an infinite sequerageay, ..., a, hasn elements whera is ex-
pressed by an infinite numeral such that the operations wsttisfy the Postulate 3
of the Grossone methodolatyyThen the following result (see [30, 32]) holds. We
reproduce here its proof for the sake of completeness.

4 The Postulate 3 stateShe part is less than the whoig applied to all numbers (finite, infinite,
and infinitesimal) and to all sets and processes (finite and infisiee[30].
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Theorem 1. The number of elements of any infinite sequence is less ol equa

Proof. The new numeral system allows us to express the number ofeatsm
of the setN as[. Thus, due to the sequence definition given above, any segquen
havingN as the domain has elements.

The notion of subsequence is introduced as a sequence frach wdme of its
elements have been removed. This means that the resultisgcuence will have
less elements than the original sequence. Thus, we obfaiitérsequences having
the number of members less than grossone. |

It becomes appropriate now to define tt@mplete sequenaes an infinite se-
quence containingl elements . For example, the sequence of natural numbers is
complete, the sequences of even and odd natural numberstaremplete because
they have% elements each (see [30, 32]). Thus, the new approach impasese
precise description of infinite sequences than the traditione: to define a se-
quence{a,} in the new language, it is not sufficient just to give a fornfolaa,, we
should determine (as it happens for sequences having arunitder of elements)
its number of elements and/or the first and the last eleméntesequence. If the
number of the first element is equal to one, we can use thed¢egr. k} whereap,
is, as usual, the general element of the sequencé &the number (that can be
finite or infinite) of members of the sequence; the followingmple clarifies these
concepts.

Example 1L et us consider the following three sequences:

{a,:0}={4, 8 ... 40-1), 40} (13)

{bn:%—l}:{4, 8 .. 4(%—2), 4(%—1)}; (14)
20, 20 20

e )={4 8 .. 45 -1 43} (15)

The three sequences hagg= b, = ¢, = 4n but they are different because they
have different number of members. Sequefag has[ elements and, therefore,

is complete{bn} has% —1, and{c,} has % elements. O

Let us consider now infinite sequences as one of the instrignsed by math-
ematicians to study the world around us and other matheatatigects and pro-
cesses. The first immediate consequence of Theorem 1 isrthaeguentialpro-
cess can have at maximuim elements. This means that a process of sequential
observations of any object cannot contain more thasteps. We are not able to

51tis worthy to notice a deep relation of this observation ®Axiom of Choice. Since Theorem 1
states that any sequence can have at maximuslements, so this fact holds for the process of a
sequential choice, as well. As a consequence, it is not possildlednse sequentially more than
[ elements from a set. This observation also emphasizes the fath¢hparallel computational
paradigm is significantly different with respect to the seqia¢oine because parallel processes
can choose- [] elements from a set.
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execute any infinite process physically but we assume ttetemde of such a pro-
cess; moreover, only a finite number of observations of efesnef the considered
infinite sequence can be executed by a human who is limiteddgumeral system
used for the observation. Indeed, we can observe only thesebers of a sequence
for which there exist the corresponding numerals in the ehaaimeral system; to
better clarify this point the following example is discudse

Example 2Let us consider the numeral system, of Piral& able to express only
numbers 1 and 2. If we add te the new numerall, we obtain a new numeral
system (we call itr). Let us consider now a sequence of natural numbers]}.

It goes from 1 tdJ (note that both numbers, 1 aht can be expressed by numerals
from E). However, the numeral systeﬁwis very weak and it allows us to observe
only ten numbers from the sequenige: 0} represented by the following numerals

a O oo a

12, .. S5-25-lo.5+1l5+2 ... D-20-10. (16)
finite R infinite
infinite

The first two numerals in (16) represent finite numbers, theaiging eight numer-
als express infinite numbers, and dots represent membédrs sétjuence of natural
numbers that are not expressiblef’irand, therefore, cannot be observed if one uses
only this numeral system for this purpose. O

In the light of the limitations concerning the process ofisagial observations,
the researcher can choose how to organize the requiredrszsroé observations
and which numeral system to use for it, defining so which elgmef the object
he/she can observe. This situation is exactly the same aunah sciences: before
starting to study a physical object, a scientist choosessiniment and its accuracy
for the study.

Example 3Let us consider the set A%,2,3,...,200-1,20} as an object of our
observation. Suppose that we want to organize the procéiss s€quential counting
of its elements. Then, due to Theorem 1, starting from thebmurh this process can
arrive at maximum tdl. If we consider the complete counting sequefine O},
then we obtain

1,2,3,4, ... 020 10,0:,0:2,0:3,...,20 1,20

) ) 3

(AN AN AN NN A2

17)
[ steps

Analogously, if we start the process of the sequential dogritom 5, the process
arrives at maximum tal + 4:

1,2,3,4,5... 0-1,0,0:1,0+2,0+3,0+4,0-5,...,20-1,20
(AN RN AR N L N I

18
[ steps (18)
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The corresponding complete sequence used in this cdsetid : 0 }. We can also
change the length of the step in the counting sequence argideonfor instance,
the complete sequeng@n—1:0}:

1,2,3,4, ... 0-1,0,0-1,0+2, ... 20-3,20-2,20-1,20
AN A A A N

19
[ steps (19

If we use again the numeral syste?mthen among finite numbers it allows us to see
only number 1 because already the next number in the sequseaot expressible
in 2. The last element of the sequenceli$2 1 and? allows us to observe it. O

The introduced definition of the sequence allows us to wortkamdy with the
first but with any element of any sequence if the element ofierest is express-
ible in the chosen numeral system independently whethesdghjgence under our
study has a finite or an infinite number of elements. Let us hisenew definition
for studying infinite sets of numerals, in particular, fotazdating the number of
points at the intervgD, 1) (see [30, 32]). To do this we need a definition of the term
‘point’ and mathematical tools to indicate a point. If we ept(as is usually done
in modern Mathematics) thataint Abelonging to the intervdD, 1) is determined
by a numerak, x € S, calledcoordinate of the point AvhereS is a set of numerals,
then we can indicate the poiAtby its coordinatex and we are able to execute the
required calculations.

It is worthwhile to emphasize that giving this definition wave not used the
usual formulation X belongs to the seR, of real numbers This has been done be-
cause we can express coordinates only by numerals ancediffeinoices of numeral
systems lead to different sets of numerals and, as a resulifférent sets of num-
bers observable through the chosen numerals. In fact, wexganess coordinates
only after we have fixed a numeral system (our instrument @ftbservation) and
this choice defines which points we can observe, namelytpbaving coordinates
expressible by the chosen numerals. This situation is &yar natural sciences
where it is well known that instruments influence the resoftebservations. Re-
mind the work with a microscope: we decide the level of thesigien we need and
obtain a result which is dependent on the chosen level ofracgulf we need a
more precise or a more rough answer, we change the lens ofiotostope.

We should decide now which numerals we shall use to expresslicates of
the points. After this choice we can calculate the numberuoherals expressible
in the chosen numeral system and, as a result, we obtain theerwf points at
the interval[0, 1). Different variants (see [30, 32]) can be chosen dependirif®
precision level we want to obtain. For instance, we can ob@gsositional numeral
system with a finite radik that allows us to work with numerals

(O.aud...8, 1@)p, & €{01,...b-2b—1}, 1<i<O. (20)
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Then, the number of numerals (20) gives us the number of aiithin the inter-
val [0,1) that can be expressed by these numerals. Note that a nunibgrthie
positional numeral system (20) cannot have more than gnesdigits (contrarily

to sets discussed in Example 3) because a numeral hguing digits would not
be observable in a sequence. In this case () such a record becomes useless in
sequential computations because it does not allow one tifg@umbers entirely
sinceg — [0 numerals remain non observed.

Theorem 2. If coordinates of points x [0, 1) are expressed by numerals (20), then
the number of the points x ovf; 1) is equal to b.

Proof.In the numerals (20) there is a sequence of digits; . .. a,_1)a,, used to
express the fractional part of the number. Due to the dedmibf the sequence and
Theorem 1, any infinite sequence can have at maxirhugiements. As a result,
there is(] positions on the right of the dot that can be filled in by oneheflt digits
from the alphabef0,1,...,b— 1} that leads td” possible combinations. Hence,
the positional numeral system using the numerals of the {@®) can expresb”
numbers. |

Corollary 1. The number of numerals
(auagaz...a—2a,—1a.)p, @& €{0,1,...b—2b-1}, 1<i<O, (21)

expressing integers in the positional system with a finidixd in the alphabet
{0,1,...b—2,b—1} is equal to B.

Proof. The proof is a straightforward consequence of Theorem 2s8ad omit-
ted. |

Corollary 2. If coordinates of points % (0, 1) are expressed by numerals (20), then
the number of the points x ovéd, 1) is equal to B — 1.

Proof. The proof follows immediately from Theorem 2. m|
Note that Corollary 2 shows that it becomes possible now sepfe and to reg-
ister the difference of the number of elements of two infisiés (the intervdD, 1)
and the interva(0, 1), respectively) even when only one element (the point 0, ex-
pressed by the numerald. .. 0 with O zero digits after the decimal point) has been
excluded from the first set in order to obtain the second one.

4 Observing Turing machinesthrough the lens of the Grossone
M ethodology

In this Section the different types of Turing machines idtroed in Section 2 are
analyzed and observed by using as instruments of obsenitéGrossone lan-
guage and methodology presented in Section 3 . In partjcafir introducing a
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distiction between physical and ideal Turing machine (seetién 4.1), some re-
sults for Single-tape and Multi-tape Turing machines ararsarized (see Sections
4.2 and 4.3 respectively), then a discussion about the algmive between Single
and Multi-tape Turing machine is reported in Section 4.4aly, a comparison be-
tween deterministic and non-deterministic Turing machitieough the lens of the
Grossone methodology is presented in Section 4.5.

4.1 Physical and Ideal Turing machines

Before starting observing Turing machines by using the &me methodology, it
is useful to recall the main results showed in the previougi@ (i) a (complete)
sequence can have maximumelements; (ii) the elements which we are able to
observe in this sequence depend on the adopted numerahsyéteeover, a distic-
tion between physical and ideal Turing machines shouldtsedaced. Specifically,
the machines defined in Section 2 (e.g. the Single-Tape gumiachine of Section
2.1) are called ideal Turing maching,” . Howerver, in order to study the limita-
tions of practical automatic computations, we also consitkchiness ?, that can
be constructed physically. They are identicaitb but are able to work only a finite
time and can produce only finite outputs. In this Sectionhhbands of machines
are analyzed from the point of view of their outputs, callgdTaring ‘computable
numbers’ or ‘computable,sequences’, and from the pointi@f\of computations
that the machines can execute .

Let us consider first a physical machine¢ and discuss about the number of
computational steps it can execute and how the obtainedtge¢kan can be inter-
preted by a human observer (e.g. the researcher) . We sufipaisigs output is
written on the tape using an alphaletontainingb symbols{0,1,...b—2b—1}
whereb is a finite number (Turing usds= 10).Thus, the output consists of a se-
quence of digits that can be viewed as a number in a positgysaéms with the
radix b. By definition, 7% should stop after a finite number of iterations. The mag-
nitude of this value depends on the physical constructio@fmachine, the way
the notion ‘iteration’ has been defined, etc., but in any ¢hsenumber is finite.

A physical machiner ? stops in two cases: (i) it has finished the execution of its
program and stops; (ii) it stops because its breakage. Im dates the output se-
guence

(a1apaz...a-1,a)p, @& €{0,1,...b—-2b—-1}, 1<i<Kk

of 7% has a finite lengtkx.

If the maximal length of the output sequence that can be coedpby 77 is
equal to a finite numbeK,, », then it followsk < K, ». This means that there exist
problems that cannot be solved 0y if the length of the output outnumbeks, ..

If a physical machiner has stopped after it has print&gd . symbols, then it is
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not clear whether the obtained output is a solution or jussalt of the depletion of
its computational resources.

In particular, with respect to the halting problem it follswhat all algorithms stop
onT?,

In order to be able to read and to understand the output, seaureher (the user)
should know a positional numeral systamwith an alphabe{0,1,...u—2,u—1}
whereu > b. Otherwise, the output cannot be decoded by the user. Merethe
researcher must be able to observe a number of symbols e tped to the maximal
length of the output sequence that can be computed by maghen&, > K..»).

If the situationK,, < K,.» holds, then this means that the user is not able to inter-
pret the obtained result. Thus, the numBér= min{K,K, . } defines the length
of the outputs that can be computed and interpreted by thre use
As a consequence, algorithms producing outputs having thard* positions be-
come less interesting from the practical point of view.

After having introduced the distinction between physiaad édeal Turing ma-
chines, let us analyze and observe them through the len& @tbssone Method-
ology. Specifically, the results obtained and discussed2ffior deterministic and
non-deterministic Single-tape Turing machines are suna®din Section 4.2 and
4.4 respectively; whereas, Section 4.3 reports additicesllts for Multi-tape Tur-
ing machines (see [43]).

4.2 Observing Single-Tape Turing machines

As stated in Section 4.1, single-tape ideal Turing machimés(see Section 2.1)
can produce outputs with an infinite number of symbolslowever, in order to be
observable in a sequence, an output should tka¥el (see Section 3). Starting
from these considerations the following theorem can bedhiced.

Theorem 3. Let M be the number of all possible complete computable segse
that can be produced by ideal single-tape Turing machinegusutputs being nu-
merals in the positional numeral system Then it follows M< b".

Proof. This result follows from the definitions of the complete sexgece and the
form of numerals

(@1az...a (_pa o), ai€{0,1,...b-2,b-1}, 1<i <,
that are used in the positional numeral system |

Corollary 3. Let us consider an ideal Turing maching' working with the alpha-
bet{0,1,2} and computing the following complete computable sequence
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0,1,2,0,1,2,0,1,2, ... 0,1,2,0,1,2. (22)

0 positions

Then ideal Turing machines working with the output alphglel} cannot produce
observable in a sequence outputs computing (22).

Since the numeral 2 does not belong to the alph&®git} it should be coded by
more than one symbol. One of codifications using the minirahlmer of symbols
in the alphabef0,1} necessary t@ode numbers 01,2 is {00,01,10}. Then the
output corresponding to (22) and computed in this codificashould be

00,01,10,00,01,10,00,01,10, ... 00,01,10,00,01, 10. (23)

Since the output (22) contains grossone positions, thaub(28) should contain
200 positions. However, in order to be observable in a sequdg282,should not
have more than grossone positions. This fact completestité.p O

The mathematical language used by Turing did not allow owkéstinguish these
two machines. Now we are able to distinguish a machine froathem also when
we consider infinite sequences. Turing’s results and theor®g do not contradict
each other. Both languages observe and describe the saew (@gmputable se-
quences) but with different accuracies.

It is not possible to describe a Turing machine (the objethefstudy) without
the usage of a numeral system (the instrument of the studyd. i&sult, it becomes
not possible to speak about an absolute number of all pessilsing machines ’.

It is always necessary to speak about the number of all des§ilzing machines
71 expressible in a fixed numeral system (or in a group of them).

Theorem 4. The maximal number of complete computable sequences gadiyc
ideal Turing machines that can be enumerated in a sequeregpial to(].

We have established that the number of complete computafleaces that can
be computed using a fixed radixis less or equab”. However, we do not know
how many of them can be results of computations of a Turinghinac Turing es-
tablishes that their number is enumerable. In order to nhitas result, he used the
mathematical language developed by Cantor and this laegdiagnot allow him
to distinguish sets having different infinite numbers ohabats. The introduction
of grossone gives a possibility to execute a more precisgsiaand to distinguish
within enumerable sets infinite sets having different nurslod elements. For in-
stance, the set of even numbers I%selements and the set of integer numbers has
20 + 1 elements. If the number of complete computable sequeNtes,is larger
than(d, then there can be differen sequential processes that eatmuifferent se-
quences of complete computable sequences. In any case&fdhele enumerating
sequential processes cannot contain more than grossonberem
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4.3 Observing Multi-tape Turing machines

Before starting to analyze the computations performed bigeal k-tapes Turing
machine (withk > 2) a1} = <Q,F,b,z,q0,F, 5(")> (see (1), see Section 2.2), it is
worth to make some considerations about the process of\aigar itself in the
light of the Grossone methodology. As discussed above, ifvavat to observe the
process of computation performed by a Turing machine whikxécutes an al-
gorithm, then we have to execute observations of the madhigesequence of
moments. In fact, it is not possible to organize a continumhservation of the ma-
chine. Any instrument used for an observation has its acguaad there always be
a minimal period of time related to this instrument allowimge to distinguish two
different moments of time and, as a consequence, to obsaneet§ register) the
states of the object in these two moments. In the period of fimssing between
these two moments the object remains unobservable.

Since our observations are made in a sequence, the processeasf/ations can
have at maximuni] elements. This means that inside a computational procéss it
possible to fix more than grossone steps (defined in a way} Buhot possible to
count them one by one in a sequence containing more thanog®etements. For

instance, in a time interva0, 1), up to bY numerals of the type (20) can be used
to identify moments of time but not more than grossone of tisam be observed
in a sequence. Moreover, it is important to stress that aoggss itself, considered
independently on the researcher, is not subdivided intiters, intermediate results,
moments of observations, etc. The structure of the languagese to describe
the process imposes what we can say about the process (defer[42detailed
discussion).

On the basis of the considerations made above, we shoulagetibe accuracy
(granularity) of the process of the observation of a Turirachine; for instance we
can choose a single operation of the machine such as readipniaol from the
tape, or moving the tape, etc. However, in order to be closawh as possible to
the traditional results, we consider an application of tla@gition function of the
machine as our observation granularity (see Section 2).

Moreover, concerning the output of the machine, we consigesymbols written
on all the k tapes of the machine by using, on each ifapédth 1 <i <k, the
alphabet’; of the tape, containing symbols, plus the blank symbdb)( Due to
the definition of complete sequence (see Section 3) on epetatdeast] symbols
can be produced and observed. This means that on d,tafier the last symbols
belonging to the tape alphabgt, if the sequence is not complete (i.e., if it has
less than] symbols) we can consider a number of blank symbb)snecessary
to complete the sequence. We say that we are considerdognalete outpubf a
k-tapes Turing machine when on each tape of the machine weédeorasscomplete
sequence of symbols belongingZoU {b}.

Theorem 5. Let a1} = <Q,F,E,Z,qo,F,6(k>> be an ideal k-tapes, k 2, Turing
machine. Then, a complete output of the machine will reguk&l symbols.
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Proof. Due to the definition of the complete sequence, on each tapevdmum
O symbols can be produced and observed and thus by considedagplete se-
quence on each of the k tapes of the machine the completetaftthe machine
will result in kO symbols. ]

Having proved that a complete output that can be producedkstapes Turing
machine results ik(J symbols, it is interesting to investigate what part of theneo
plete output produced by the machine can be observed in @iseguaking into
account that it is not possible to observe in a sequence rhargt symbols (see
Section 3). As examples, we can decide to make in a sequeragf time following

observations: (i)J symbols on one among tletapes of the machine, (ii% sym-

bols on each of thi-tapes of the machine; (iii% symbols on 2 among thHetapes
of the machine, an so on.

Theorem 6. Let a1} = <Q,I‘,5,Z,q0,F,6(k>> be an ideal k-tapes, k 2, Turing
machine. Let M be the number of all possible complete outhatsan be produced
by art. Then it follows M= K., (b +1)".

Proof.Due to the definition of the complete sequence, on eachitapth 1 <i <
k, at maximum symbols can be produced and observed by usindptisgmbols
of the alphabet; of the tape plus the blank symbdb)( as a consequence, the
number of all the possible complete sequences that can lbleiged and observed
on atape is (bj +1)". A complete output of the machine is obtained by considering
a complete sequence on each of thelttapes of the machine, thus by considering
all the possible complete sequences that can be produceabardved on each of
the k tapes of the machine, the numb&of all the possible complete outputs will
results in[¥_; (bi +1)". O

As the numbeM = ¥, (b 4+ 1)" of complete outputs that can be produced
by a1k is larger than grossone, then there can be different seiquentimerating
processes that enumerate complete outputs in differens vimyany case, each of
these enumerating sequential processes cannot contagrtmaorgrossone members
(see Section 3).

4.4 Comparing different Multi-tape machines and Multi and
Single-tape machines

In the classical framework ide&ttape Turing machines have the same computa-
tional power of Single-tape Turing machines and given a Mafte Turing ma-
chineas! itis always possible to define a Single-tape Turing machihiehvis able

to fully simulate its behavior and therefore to completetg@ite its computations.
As showed for Single-tape Turing machine (see [42]), thes&woe methodology
allows us to give a more accurate definition of the equivadearoong different ma-
chines as it provides the possibility not only to separafferint classes of infinite
sets with respect to their cardinalities but also to meatweenumber of elements
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of some of them. With reference to Multi-tape Turing mackingae Single-tape
Turing machines adopted for their simulation use a pawickihd of tape which is
divided into tracks (multi-track tape). In this way, if thepe hasn tracks, the head
is able to access (for reading and/or writing) all theharacters on the tracks dur-
ing a single operation. This tape organization leads toedgsttforward definition of
the behavior of a Single-tape Turing machine able to corafyletxecute the com-
putations of a given Multi-tape Turing machine (see Sec#d). However, the so
defined Single-tape Turing machine', to simulatet computational steps ofr,.,
needs to execut®(t?) transitions {* +t in the worst case) and to use an alphabet
with 2¢(|Z1| + 1) K.,(|Zi| + 2) symbols (again see Section 2.2). By exploiting the
Grossone methodology is is possibile to obtain the follgwvigsult that has a higher
accuracy with respect to that provided by the traditionafrfework.

Theorem 7. Let us considens,, = <Q,F,5,Z,qo,F, 6(k)>,a k-tapes, k> 2, Turing

machine, wher& = U};lzi is given by the union of the symbols in the k tape al-
phabetsr;, ..., % andl" = ZU{b}. If this machine performs t computational steps
such that

t<(VATTI-1), (24)

then there existar, = {QQI",B,ZZ%,F’,ES’}, an equivalent Single-tape Turing
machine with ™| = 2¢(|Z4| + 1) [T¥_,(|Zi| + 2), which is able to simulater,, and
can be observed in a sequence.

Proof. Let us recall that the definition afr, requires for a Single-tape to be
divided into X tracks;k tracks for storing the characters in tkeéapes ofar,, and
k tracks for signing through the markerthe positions of thek heads on thé
tapes ofar, (see Section 2.2). The transition functidff of the k-tapes machine
is given byd® (qu,ai1,...,ak) = (0, 8j1,- -+ @) Zj1s - -5 Zj) ), With Zj,...,Zj, €
{R,L,N}; as a consequence the corresponding transition funétiofithe Single-
tape machine, for each transition specifiedty must individuate the current state
and the position of the marker for each track and then writinerracks the required
symbols, move the markers and go in another internal stateed€h computational
step ofar,, ¢! must execute a sequence of steps for covering the porticapebt
between the two most distant markers. As in each computdtiep a marker can
move at most of one cell and then two markers can move awayahehat most
of two cells, aftert steps ofar the markers can be at mogt &lls distant, thus
if a7, executeg steps,m, executes at most:¥_; i = t?+t steps. In order to be
observable in a sequence the numiBer t of steps, performed byr,' to simulatet
steps ofar)f, must be less than or equal b Namely, it should be¢? +t <. The
fact that this inequality is satisfied for %(\/4D +1-1) completes the proofd
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4.5 Comparing deterministic and non-deterministic Turing
machines

Let us discuss the traditional and new results regardingahgputational power of
deterministic and non-deterministic Turing machines.

Classical results show an exponential growth of the timaired for reaching
a final configuration by the deterministic Turing machimg with respect to the
time required by the non-deterministic Turing machig, assuming that the time
required for both machines for a single step is the same. Menve the classic
theory on Turing machines it is not known if there is a moreciffit simulation of
M. In other words, itis an important and open problem of Corap8tience theory
to demonstrate that it is not possible to simulate a nonraeéstic Turing machine
by a deterministic Turing machine with a sub-exponentiahbars of steps.

Let us now return to the new mathematical language. Sincentfie interest to
non-deterministic Turing machines (5) is related to the@aretical properties, here-
inafter we start by a comparison of ideal deterministic ignnachinesy ’, with
ideal non-deterministic Turing machingg” . Physical machines ? and7 % are
considered at the end of this section. By taking into acctlumtresults of Section
4.4, the proposed approach can be applied both to single atidtape machines,
however, single-tape machines are considered in the folgpw

Due to the analysis made in Section 4.3, we should choosectheaxy (gran-
ularity) of processes of observation of both machimesand7 /. In order to be
close as much as possible to the traditional results, weidenagain an applica-
tion of the transition function of the machine as our obsgowagranularity. With
respect tor ' this means that the nodes of the computational tree are\@user
With respect tor  we consider sequences of such nodes. For both cases the ini-
tial configuration is not observed, i.e., we start our obasons from level 1 of the
computational tree.

This choice of the observation granularity is particulatiractive due to its ac-
cordance with the traditional definitions of Turing maclsiiggee definitions (1) and
(5)). A more fine granularity of observations allowing us tdidw internal oper-
ations of the machines can be also chosen but is not so cemiefm fact, such
an accuracy would mix internal operations of the machinegk wperations of the
algorithm that is executed. A coarser granularity could estered, as well. For
instance, we could define as a computational step two cotise@pplications of
the transition function of the machine. However, in thisecag& do not observe all
the nodes of the computational tree. As a consequence, vie imiss some results
of the computation as the machine could reach a final contigarbefore complet-
ing an observed computational step and we are not able tovebsden and on
which configuration the machine stopped. Then, fixed theeatntessel of granular-
ity the following result holds immediately.

Theorem 8. (i) With the chosen level of granularity no more th@arcomputational
steps of the maching’ can be observed in a sequence. (ii) In order to give possi-
bility to observe at least one computational path of the catafonal tree ofr '
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A

Fig. 2 The maximum number of computational steps of the mactih¢hat can be observed in a
sequence

from the level 1 to the level k, the depthzK., of the computational tree cannot be
larger than grossone, i.e., % [J.

Proof. Both results follow from the analysis made in Section 3.1 &helorem 1.
O

In Figure 2 the first result of Theorem 8 concerning the maximmumber of
computational steps of the machia€ that can be observed in a sequence is ex-
emplified with reference to the computational tree of the mrae introduced in
Section 2.3.
Similarly, the second result of Theorem 8 concerning thetdepthe computational
tree of7 7 is exemplified in Figure 3.

Corollary 4. Suppose that d is the non-deterministic degree 6¥ and S is the
number of leaf nodes of the computational tree with a dep#pkesenting the pos-
sible results of the computation af’?. Then it is not possible to observe all S
possible results of the computation of * if the computational tree of ' is
complete and > 0.

Proof. For the number of leaf nodes of the tr&pf a generic non-deterministic
Turing machiner /X the estimat& < dX holds. In particularS= d¥ if the computa-
tional tree is complete, that is our case. On the other hafadlaws from Theorem 1
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N . \ / l\
Fig. 3 An observable computational path of the machine

that any sequence of observations cannot have more thasogeglements. As a
consequence, the same limitation holds for the sequendesefeations of the leaf
nodes of the computational tree. This means that we are h@t@bbserve all the
possible results of the computation of our non-deternmimiBtiring machiner '~
if d<>0. m

In Figure 4 the result of Corollary 4 concerning the maximwmiber of compu-
tational results of the machine! that can be observed in a sequence is exemplified
with reference to the computational tree of the machinedhiced in Section 2.3 .

Coroallary 5. Any sequence of observations of the nodes of the compughtier
of a non-deterministic Turing machire’™ cannot observe all the nodes of the tree
if the number of nodes N is such thatN.

Proof. The corollary follows from Theorems 1, 8, and Corollary 4. |

These results lead to the following theorem again under dngesassumption
about the chosen level of granularity of observations, the nodes of the compu-
tational tree ofr X representing configurations of the machine are observed.

Theorem 9. Given a non-deterministic Turing machioe " with a depth, k, of the
computational tree and with a non-deterministic degree chdhat
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A A

123456 789

Fig. 4 Observable results of of the machimé

d(kd“*t — (k+1)d*+1)
(d-1)

<4, (25)

then there exists an equivalent deterministic Turing maehi’ which is able to
simulater X and can be observed.

Proof. For simulatingz ’*C, the deterministic maching’ executes a breadth-
first visit of the computational tree af /L. In this computational tree, whose depth
is 1< k<O, each node has, by definition, a number of childzevhere 0< ¢ < d.
Let us suppose that the tree is complete, i.e., each node-hakchildren. In this
case the tree has® leaf nodes andl! computational paths of lengthfor each
1 < j < k. Thus, for simulating all the possible computationszof¥, i.e., for a
complete visiting the computational tree of X and considering all the possible
computational paths consisting pfcomputational steps for each<lj < k, the
deterministic machine ! will execute

kK
Ky =S jd! (26)
T ,;

steps (note that if the computational treezof¢ is not complete ’ will execute
less tharK,, ;). Due to Theorems 1 and 8, and Corollary 5, it follows thatriden
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to prove the theorem it is sufficient to show that under caomaist of the theorem it
follows that

Ky <O, (27)
To do this let us use the well known formula
k k+1
coodett -1
d = ; (28)
24 =g

and derive both parts of (28) with respectitoAs the result we obtain

Ko kd“t — (k4 1)d* +1
g1 _
J;jd d-1? . (29)

Notice now that by using (26) it becomes possible to reptasemumbeK.; ; as

k k
K.,=5jd=dy jdi-L
T glj 121]

This representation together with (29) allow us to write

d(kd“*t — (k+1)d*+1)
(d-1)

KTI - (30)
Due to assumption (25), it follows that (27) holds. This feehcludes the proof of
the theorem. |

Corollary 6. Suppose that the length of the input sequence of symbols ofi-a n
deterministic Turing maching ' is equal to a number n and ' has a complete
computational tree with the depth k such thatkl, i.e., polynomially depends on
the length n. Then, if the valuesrd and | satisfy the following condition

d(n'd"+1— (n' + 1)d" + 1)

A1 <0, (31)

then: (i) there exists a deterministic Turing machiné that can be observed and
able to simulater '?¢; (i) the number, K., of computational steps required to a
deterministic Turing maching’ to simulater ' for reaching a final configuration
exponentially depends on n.

Proof. The first assertion follows immediately from theorem 9. Lefouove the
second assertion. Since the computational tree’éf is complete and has the depth
k, the corresponding deterministic Turing machiné for simulatingz '~ will ex-
ecuteK,, ; steps wher&, ; is from (27). Since condition (31) is satisfied for ¢,
we can substitute = n' in (30). As the result of this substitution and (31) we obtain
that
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d(n'd"+1— (n' + 1)d" +1)
(d—1)2

i.e., the number of computational steps required to theraétéstic Turing machine
7! to simulate the non-deterministic Turing machin& for reaching a final con-
figuration isK., < O and this number exponentially depends on the length of the
sequence of symbols provided as inputrt&', m|

Results described in this section show that the introdnaifdhe new mathemat-
ical language including grossone allows us to perform a rsalele analysis with
respect to traditional languages and to introduce in theqe® of this analysis the
figure of the researcher using this language (more precigegmphasize the pres-
ence of the researcher in the process of the descriptiontoifretic computations).
These results show that there exist limitations for siniugabon-deterministic Tur-
ing machines by deterministic ones. These limitations @awviéwed now thanks to
the possibility (given because of the introduction of thesmeimeral) to observe
final points of sequential processes for both cases of finidrainite processes.

Theorems 8, 9, and their corollaries show that the discovéneitations and
relations between deterministic and non-deterministigrniumachines have strong
links with our mathematical abilities to describe automatmputations and to con-
struct models for such descriptions. Again, as it was in tle¥ipus cases studied
in this chapter, there is no contradiction with the traditbresults because both
approaches give results that are correct with respect téatigeiages used for the
respective descriptions of automatic computations.

We conclude this section by the note that analogous resaite obtained for
physical machines ? and 7 *%, as well. In the case of ideal machines, the pos-
sibility of observations was limited by the mathematicaldaages. In the case of
physical machines they are limited also by technical facfare remind again the
analogy: the possibilities of observations of physicists lanited by their instru-
ments). In any given moment of time the maximal number ofitens,Kmay, that
can be executed by physical Turing machines can be detedmingepends on the
speed of the fastest machin€’ available at the current level of development of
the humanity, on the capacity of its memory, on the time awédl for simulating
a non-deterministic machine, on the numeral systems knovitnan beings, etc.
Together with the development of technology this numbel iwdrease but it will
remain finite and fixed in any given moment of time. As a reséiprems presented
in this section can be re-written far? and7 ?* by substituting grossone witax
in them.

K’Z” - g D7 (32)

5 Concluding Remarks

Since the beginning of the last century, the fundamentalraatf the concept of
automatic computationattracted a great attention of mathematicians and computer
scientists (see [4, 14, 15, 16, 23, 24, 27, 44]). The firstistudad as their ref-
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erence context the David Hilbert programme, and as thegreete language that
introduced by Georg Cantor [3]. These approaches lead ferelift mathematical
models of computing machines (see [1, 6, 9]) that, surpgigirvere discovered
to be equivalent (e.g., anything computable in Mealculus is computable by a
Turing machine). Moreover, these results, and expeciatigé obtained by Alonzo
Church, Alan Turing [4, 10, 44] and Kurtd@glel, gave fundamental contributions to
demonstrate that David Hilbert programme, which was basdti®@idea that all of
the Mathematics could be precisely axiomatized, cannotalzed.

In spite of this fact, the idea of finding an adequate set obrasi for one or
another field of Mathematics continues to be among the masicéive goals for
contemporary mathematicians. Usually, when it is necgdsailefine a concept or
an object, logicians try to introduce a number of axioms dbsw the object in
the absolutely best way. However, it is not clear how to rethih absoluteness;
indeed, when we describe a mathematical object or a concerevlimited by
the expressive capacity of the language we use to make thisipon. A richer
language allows us to say more about the object and a weakgudge — less.
Thus, the continuous development of the mathematical (ahdmly mathematical)
languages leads to a continuous necessity of a transeriptid specification of
axiomatic systems. Second, there is no guarantee that tisectaxiomatic system
defines ‘sufficiently well’ the required concept and a comtins comparison with
practice is required in order to check the goodness of thepded set of axioms.
However, there cannot be again any guarantee that the newwrevill be the last
and definitive one. Finally, the third limitation already miened above has been
discovered by @del in his two famous incompleteness theorems (see [10]).

Starting from these considerations, in the chapter, SiagteMulti-tape Turing
machines have been described and observed through theflges ®rossone lan-
guage and methodology . This new language, differently ftoentraditional one,
makes it possible to distinguish among infinite sequencetiffeirent length so en-
abling a more accurate description of Single and Multi-tApeng machines. The
possibility to express the length of an infinite sequencdi@iy gives the pos-
sibility to establish more accurate results regarding theéwalence of machines in
comparison with the observations that can be done by usengatitional language.

It is worth noting that the traditional results and thosespreged in the chapter
do not contradict one another. They are just written by udiffgrent mathematical
languages having different accuracies. Both mathematoguages observe and
describe the same objects — Turing machines — but with diffesiccuracies. As a
result, both traditional and new results are correct wiipeet to the mathematical
languages used to express them and correspond to diffemntaies of the obser-
vation. This fact is one of the manifestations of the relgtiof mathematical results
formulated by using different mathematical languages énsiime way as the usage
of a stronger lens in a microscope gives a possibility toirdgstish more objects
within an object that seems to be unique when viewed by a wdaks.

Specifically, the Grossone language has allowed us to gévdefinition ofcom-
plete outputof a Turing machine, to establish when and how the output oha m
chine can be observed, and to establish a more accuraiemstzip between Multi-
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tape and Single-tape Turing machines as well as betweemgistic and non-

deterministic ones. Future research efforts will be geaoedpply the Grossone
language and methodology to the description and observafinew and emerging
computational paradigms.
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